
2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 1/5

Moving to zsh

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh (this article)
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

zsh (I believe it is pronounced zee-shell, though zish is fun to say) will

succeed bash as the default shell. bash has been the default shell since

Mac OS X 10.3 Panther.

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

Why?

The bash binary bundled with macOS has been stuck on version 3.2 for

a long time now. bash v4 was released in 2009 and bash v5 in January

2019. The reason Apple has not switched to these newer versions is that
they are licensed with GPL v3. bash v3 is still GPL v2.

zsh, on the other hand, has an ‘MIT-like’ license, which makes it much

more palatable for Apple to include in the system by default. zsh has

been available as on macOS for a long time. The zsh version on macOS

10.14 Mojave is fairly new (5.3). macOS 10.15 Catalina has the current
zsh 5.7.1.

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 2/5

Is bash gone!?

No.

macOS Catalina still has the same /bin/bash (version 3.2.57) as Mojave

and earlier macOS versions. This change is only for new accounts creat-
ed on macOS Catalina. When you upgrade to Catalina, a user’s default
shell will remain what it was before.

Many scripts in macOS, management systems, and Apple and third par-
ty installers rely on /bin/bash. If Apple just yanked this binary in macOS

10.15 Catalina or even 10.16. Many installers and other solutions would
break and simply cease to function.

Users that have /bin/bash as their default shell on Catalina will see a

prompt at the start of each Terminal session stating that zsh is now the

recommended default shell. If you want to continue using /bin/bash,

you can supress this message by setting an environment variable in
your .bash_profile or .bashrc.

export BASH_SILENCE_DEPRECATION_WARNING=1

You can also download and install a newer version of bash yourself.
Keep in mind that custom bash installations reside in a different direc-
tory, usually /usr/local/bin/bash.

Will bash remain indefinitely?

Apple is strongly messaging that you should switch shells. This is differ-
ent from the last switch in Mac OS X 10.3 Panther, when Apple switched
the default to bash, but didn’t really care if you remained on tcsh. In

fact, tcsh is still present on macOS.

Apple’s messaging should tell us, that the days of /bin/bash are num-

bered. Probably not very soon, but eventually keeping a more than ten
year old version of bash on the system will turn into a liability. The built-

in bash had to be patched in 2014 to mitigate the ‘Shellshock’ vulnera-
bility. At some point Apple will consider the cost of continued mainte-
nance too high.

https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/
https://scriptingosx.com/2019/02/install-bash-5-on-macos/

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 3/5

Another clue is that a new shell appeared on macOS Catalina (and is
mentioned in the support article). The ‘Debian Almquist Shell’ dash has

been added to the lineup of shells. dash is designed to be a minimal im-

plementation of the Posix standard shell sh. So far, in macOS (including

Catalina),sh invokes bash in sh-compatibility mode.

As Apple’s support article mentions, Catalina also adds a new mecha-
nism for users and admins to change which shell handles sh invoca-

tions. MacAdmins or users can change the symbolic link stored in
/var/select/sh to point to a shell other than /bin/bash. This changes

which shell interprets scripts the #!/bin/sh shebang or scripts invoked

with sh -c. Changing the interpreter for sh should not, but may change

the behavior of several crucial scripts in the system, management tools,
and in installers, but may be very useful for testing purposes.

All of these changes are indicators that Apple is preparing to remove
/bin/bash at some, yet indeterminate, time in the future.

Do I need to wait for Catalina to switch to zsh?

No, zsh is available Mojave and on older macOS versions. You can start

testing zsh or even switch your default shell already.

If you want to just see how zsh works, you can just open Terminal and

type zsh:

$ zsh
MacBook%

The main change you will see is that the prompt looks different. zsh

uses the % character as the default prompt. (You can change that, of

course.) Most navigation keystrokes and other behaviors will remain
the same as in bash.

If you want to already switch your default shell to zsh you can use the

chsh command:

$ chsh -s /bin/zsh

https://support.apple.com/en-us/HT208050

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 4/5

This will prompt for your password. This command will not change the
current shell, but all new ones, so close the current Terminal windows
and tabs and open a new one.

How is zsh different?

Like bash (‘Bourne again shell’), zshderives from the ‘Bourne’ family of

shells. Because of this common ancestry, it behaves very similar in day-
to-day use. The most obvious change will be the different prompt.

The main difference between bash and zsh is configuration. Since zsh ig-

nores the bash configuration files (.bash_profile or .bashrc) you cannot

simply copy customized bash settings over to zsh. zsh has much more

options and points to change zsh configuration and behavior. There is

an entire eco-system of configuration tools and themes called oh-my-zsh

which is very popular.

zsh also offers better configuration for auto-completion which is far eas-

ier than in bash.

I am planning a separate post, describing how to transfer (and trans-
late) your configurations from bash to zsh.

What about scripting?

Since zsh has been present on macOS for a long time, you could start

moving your scripts from bash to zsh right away and not lose backwards

compatibility. Just remember to set the shebang in your scripts to
#!/bin/zsh.

You will gain some features where zsh is superior to bash v3, such as ar-

rays and associative arrays (dictionaries).

There is one exception where I would now recommend to use /bin/sh

for your scripts: the Recovery system does not contain the /bin/zsh

shell, even on the Catalina beta. This could still change during the beta
phase, or even later, but then you still have to consider older macOS in-
stallations where zsh is definitely not present in Recovery.

https://ohmyz.sh/

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 5/5

Proudly powered by WordPress

When you plan to use your scripts or pkgs with installation scripts in a
Recovery (or NetInstall, or bootable USB drive) context, such as Twoca-
noes MDS, installr or bootstrappr, then you cannot rely on /bin/zsh.

Since we now know that bash is eventually going away, the only com-

mon choice left is /bin/sh.

When you build an installer package, it can be difficult to anticipate all
the contexts in which it might be deployed. So, for installation pre- and
postinstall scripts, I would recommend using /bin/sh as the shebang

from now on.

I used to recommend using /bin/bash for everything MacAdmin related.

/bin/sh is definitely a step down in functionality, but it seems like the

safest choice for continued support.

Summary

Overall, while the messaging from Apple is very interesting, the change
itself is less dramatic than the headlines. Apple is not ‘replacing’ bash

with zsh, at least not yet. Overall, we will have to re-think and re-learn a

few things, but there is also much to be gained by finally switching from
a ten-year-old shell to a new modern one!

This git repo has been shared by many on MacAdmins Slack:
rothgar/mastering-zsh, I will certainly dive into that and share about
my experiences here!

https://wordpress.org/
https://twocanoes.com/products/mac/mac-deploy-stick/
https://github.com/munki/installr
https://github.com/munki/bootstrappr
https://github.com/rothgar/mastering-zsh

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 1/6

Moving to zsh, part 2: Configuration Files

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files (this article)
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

In part one I talked about Apple’s motivation to switch the default shell
and urge existing users to change to zsh.

Since I am new to zsh as well, I am planning to document my process of

transferring my personal bash setup and learning the odds and ends of

zsh.

Many websites and tutorials leap straight to projects like oh-my-zsh or
prezto where you can choose from hundreds of pre-customized and
pre-configured themes.

While these projects are very impressive and certainly show off the
flexibility and power of zsh customization, I feel this will actually pre-

vent an understanding of how zsh works and how it differs from bash.

So, I am planning to build my own configuration ‘by hand’ first.

At first, I actually took a look at my current bash_profile and cleaned it

up. There were many aliases and functions which I do not use or broke

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX
https://scriptingosx.com/2019/06/moving-to-zsh/
https://ohmyz.sh/
https://github.com/sorin-ionescu/prezto

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 2/6

in some macOS update. I the end, this is what I want to re-create in zsh:

aliases
mostly shortcuts to open files with a specific application

functions
show man pages in a dedicated Terminal window
some more simple functions
get the frontmost Finder window path

shell settings
case-insensitive globbing
case-insensitive path-completion (for bash this is set in .inputrc)

command history, shared across windows and sessions
use BBEdit as the editor

prompt:
show current working dir
show a colored symbol showing the last command’s exit code
update the Terminal window title bar to show the cwd

Most of these should be fairly easy to transfer. Some might be…
interesting.

But first, where do we put our custom zsh configuration?

zsh Configuration Files

bash has a list of possible files that it tries in predefined order. I have

the description in my post on the bash_profile.

zsh also has a list of files it will execute at shell startup. The list of possi-

ble files is even longer, but somewhat more ordered.

all users user login
shell

interac-
tive shell

scripts Termi-
nal.app

/etc/zshe

nv

.zshenv √ √ √ √

/etc/zpro

file

.zprofile √ x x √

/etc/zshr

c

.zshrc √ √ x √

https://scriptingosx.com/2017/02/the-macos-open-command/
https://scriptingosx.com/2017/04/on-viewing-man-pages/
https://scriptingosx.com/2017/02/terminal-finder-interaction/
https://scriptingosx.com/2016/04/make-tab-completion-in-bash-case-insensitive/
https://scriptingosx.com/2017/07/minimal-terminal-prompt/
https://scriptingosx.com/2019/05/show-exit-code-in-your-bash-prompt/
https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 3/6

all users user login
shell

interac-
tive shell

scripts Termi-
nal.app

/etc/zlog

in

.zlogin √ x x √

/etc/zlog

out

.zlogout √ x x √

The files in /etc/ will be launched (when present) for all users. The .z*

files only for the individual user.

By default, zsh will look in the root of the home directory for the user

.z* files, but this behavior can be changed by setting the ZDOTDIR envi-

ronment variable to another directory (e.g. ~/.zsh/) where you can then

group all user zsh configuration in one place.

On macOS you could set the ZDOTDIR to ~/Documents/zsh/ and then use

iCloud syncing (or a different file sync service) to have the same files on
all your Macs. (I prefer to use git.)

bash will either use .bash_profile for login shells, or .bashrc for interac-

tive shells. That means, when you want to centralize configuration for
all use cases, you need to source your .bashrc from .bash_profile or vice

versa.

zsh behaves differently. zsh will run all of these files in the appropriate

context (login shell, interactive shell) when they exist.

zsh will start with /etc/zshenv, then the user’s .zshenv. The zshenv files

are always used when they exist, even for scripts with the #!/bin/zsh

shebang. Since changes applied in the zshenv will affect zsh behavior in

all contexts, you should you should be very cautious about changes ap-
plied here.

Next, when the shell is a login shell, zsh will run /etc/zprofile and

.zprofile. Then for interactive shells (and login shells) /etc/zshrc and

.zshrc. Then, again, for login shells /etc/zlogin and .zlogin. Why are

there two files for login shells? The zprofile exists as an analog for

bash’s and sh’s profile files, and zlogin as an analog for ksh login files.

Finally, there are zlogout files that can be used for cleanup, when a lo-

gin shell exits. In this case, the user level .zlogout is read first, then the

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 4/6

central /etc/zlogout. If the shell is terminated by an external process,

these files might not be run.

Apple Provided Configuration Files

macOS Mojave (and earlier versions) includes /etc/zprofile and

/etc/zshrc files. Both are very basic.

/etc/zprofile uses /usr/libexec/path_helper to set the default PATH.

Then /etc/zshrc enables UTF–8 with setopt combiningchars.

Like /etc/bashrc there is a line in /etc/zshrc that would load

/etc/zshrc_Apple_Terminal if it existed. This is interesting as

/etc/bashrc_Apple_Terminal contains quite a lot of code to help bash to

communicate with the Terminal application. In particular bash will

send a signal to the Terminal on every new prompt to update the path
and icon displayed in the Terminal window title bar, and provides other
code relevant for saving and restoring Terminal sessions between appli-
cation restarts.

However, there is no /etc/zshrc_Apple_Terminal and we will have to

provide some of this functionality ourselves.

Note: As of this writing, /etc/zshrc in the macOS Catalina

beta is different from the Mojave /etc/zshrc and provides

more configuration. However, since Catalina is still beta, I

will focus these articles on Mojave and earlier. Once

Catalina is released, I may update these articles or write a

new one for Catalina, if necessary.

Which File to use?

When you want to use the ZDOTDIR variable to change the location of the

other zsh configuration files, setting that variable in ~/.zshenv seems

like a good choice. Other than that, you probably want to avoid using
the zshenv files, since it will change settings for all invocations of zsh, in-

cluding scripts.

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 5/6

macOS Terminal considers every new shell to be a login shell and an in-
teractive shell. So, in Terminal a new zsh will potentially run all config-

uration files.

For simplicity’s sake, you should use just one file. The common choice is
.zshrc.

Most tools you can download to configure zsh, such as ‘prezto’ or ‘oh-

my-zsh’, will override or re-configure your .zshrc. You could consider

moving your code to .zlogin instead. Since .zlogin is sourced after

.zshrc it can override settings from .zshrc. However, .zlogin is only

called for login shells.

The most common situation where you do not get a login shell with
macOS Terminal, is when you switch to zsh from another shell by typing

the zsh command.

I would recommend to put your configuration in your .zshrc file and if

you want to use any of the theme projects, read and follow their in-
structions closely as to how you can preserve your configurations to-
gether with theirs.

Managing the shell for Administrators

MacAdmins may have the need to manage certain shell settings for
their users, usually environment variables to configure certain com-
mand line tool’s behaviors.

The most common need is to expand the PATH environment variable for

third party tools. Often the third party tools in question will have elabo-
rate postinstall scripts that attempt to modify the current user’s
.bash_profile or .bashrc. Sometimes, these tools even consider that a

user might have changed the default shell to something other than bash.

On macOS, system wide changes to the PATH should be done by adding

files to /etc/paths.d.

As an administrator you should be on the lookout for scripts and in-
stallers that attempt to modify configuration files on the user level, dis-
able the scripts during deployment, and manage the required changes
centrally. This will allow you to keep control of the settings even as tools

https://github.com/sorin-ionescu/prezto
https://oh-my-z.sh/
https://scriptingosx.com/2017/05/where-paths-come-from/

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 6/6

change, are added or removed from the system, while preserving the
user’s custom configurations.

To manage environment variables other than PATH centrally, administra-

tors should consider /etc/zshenv or adding to the existing /etc/zshrc. In

these cases you should always monitor whether updates to macOS over-
write or change these files with new, modified files of their own.

Summary

There are many possible files where the zsh can load user configura-

tion. You should use ~/.zshrc for your personal configurations.

There are many tools and projects out there that will configure zsh for

you. This is fine, but might keep you from really understanding how
things work.

MacAdmins who need to manage these settings centrally, should use
/etc/paths.d and similar technologies or consider /etc/zshenv or

/etc/zshrc.

Apple’s built-in support for zsh in Terminal is not as detailed as it is for

bash.

Next: Part 3 – Shell Options

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 1/9

Moving to zsh, part 3: Shell Options

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options (this article)
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

Now that we have chosen a file to configure our zsh, we need to decide

on ‘what’ to configure and ‘how.’ In this post, I want to talk about zsh’s

shell options.

As I have mentioned in the earlier posts, I am aware that there are
many solutions out there that give you a pre-configured ‘shortcut’ into
lots of zsh goodness. But I am interested in learning this the ‘hard way’

without shortcuts. Call me old-fashioned. (“Uphill! In the snow! Both
ways!”)

In the previous post, I listed some features that I would like to transfer
from my bash configuration. While researching how to implement these

options in zsh, I found a few, new and interesting options in zsh.

The settings from bash which I want in zsh were:

case-insensitive globbing
command history, shared across windows and sessions

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 2/9

Note: bash in this series of posts specifically refers to the

version of bash that comes with macOS as /bin/bash

(v3.2.57).

Note 2: Mono-typed lines starting with a % show commands

and results from zsh. Mono-typed lines starting with $

show commands and results in bash

What are Shell Options?

Shell options are preferences for the shell’s behavior. You are using
shell options in bash, when you enable ‘trace mode’ for scripts with the

set -x command or the bash -x option. (Note: this also works with zsh

scripts.)

zsh has a lot of shell options. Many of these options serve the purpose of

enabling (or disabling) compatibility with other shells. There are also
many options which are specific to zsh.

You can set an option with the setopt command. For compatibility with

other shells the setopt command and set -o have the same effect (set

an option by name). The following commands set the same option:

set -o AUTO_CD
setopt AUTO_CD

The names or labels of the options are commonly written in all capitals
in the documentation but in lowercase when listed with the setopt tool.

The labels of the options are case insensitive and any underscores in
the label are ignored. So, these commands set the same option:

setopt AUTO_CD
setopt autocd
setopt auto_cd
setopt autoCD

There are quite a few ways to negate or unset an option. First you can
use unsetopt or set +o. Alternatively, you can prefix with NO or no to

http://zsh.sourceforge.net/Doc/Release/Options.html#Options

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 3/9

negate an option. The following commands all have the same effect of
turning off the previously set option AUTO_CD

unsetopt AUTO_CD
set +o AUTO_CD
unsetopt autocd
setopt NO_AUTO_CD
setopt noautocd

Any options you change will only take effect in the current instance of
zsh. When you want to change the settings for all new shells, you have

to put the commands in one of the configuration files (usually .zshrc).

Showing the current Options

You can list the existing shell options with the setopt command:

% setopt
combiningchars
interactive
login
monitor
shinstdin
zle

This list only shows options are changed from the default set of options
for zsh. These options are marked with <D> (default for all shell emula-

tions) or <Z> (default for zsh) in the documentation or the zshoptions

man page.

You can also get a list of all default zsh options with the command:

% emulate -lLR zsh

Some zsh Options I use

As I have mentioned before in my posts on bash configuration, I prefer

minimal configuration changes, so I do not feel all awkward and lost
when I have to work on an ‘un-configured’ Mac.

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
http://zsh.sourceforge.net/Doc/Release/Options.html#Options
https://scriptingosx.com/2017/07/minimal-terminal-prompt/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 4/9

These configurations are a personal choice and you should pick and
choose your own. You can find a full list of zsh options in the zsh Manu-

al or with man zshoptions.

On the other hand, exploring the options allows us to explore a few use-
ful zsh features.

Case Insensitive Globbing

Note: ‘Globbing’ is a unix/shell term that refers to the expansion of wild-
card characters, such as * and ? into full file paths and names. I.e. ~/D*

is expanded into /Users/armin/Desktop /Users/armin/Documents

/Users/armin/Downloads

Since the file system on macOS is (usually) case-insensitive, I prefer
globbing and tab-completion to be case-insensitive as well.

The zsh option which controls this is CASE_GLOB. Since we want globbing

to be case-insensitive, we want to turn the option off, so:

setopt NO_CASE_GLOB

You can test this in the shell:

% ls ~/d*<tab>

In zsh tab completion will replace the wildcard with the actual result. So

after the tab you will see:

% ls /Users/armin/Desktop /Users/armin/Documents
/Users/armin/Downloads

Using tab completion this way to see and possibly edit the actual re-
placement for wildcards is a useful safety net.

In bash hit the tab key will list possible completions, but not substitute

them in the command prompt.

If you do not like this behavior in zsh then you can change to behavior

similar to bash with:

http://zsh.sourceforge.net/Doc/Release/Options.html#Options

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 5/9

setopt GLOB_COMPLETE

Automatic CD

Sometimes you enter the path to a directory, but forget the leading cd:

$ Library/Preferences/
bash: Library/Preferences/: is a directory

% Library/Preferences
zsh: permission denied: Library/Preferences

With AUTO_CD enabled in zsh, the shell will automatically change

directory:

% Library/Preferences
% pwd
/Users/armin/Library/Preferences

This works with relative and absolute paths, including the ..:

% ..
% pwd
/Users/armin/Library
% ../Desktop
% pwd
/Users/armin/Desktop

I have an alias in my .bash_profile that sets the .. command to cd ...

Auto CD replaces that functionality and more.

Enable Auto CD with:

setopt AUTO_CD

Shell History

Shells commonly remember previously executed commands and allows
you to recall them with the up and down arrow keys, search or special
history commands.

https://scriptingosx.com/2017/05/configuring-bash-with-aliases-and-functions/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 6/9

Most of those keys work the same in zsh. However, there are a few

things you need to configure for zsh history to work as you are used to

with bash on macOS.

By default, zsh does not save its history when the shell exits. The history

is ‘forgotten’ when you close a Terminal window or tab. To make zsh

save its history to a file when it exits, you need to set a variable in the
shell:

HISTFILE=${ZDOTDIR:-$HOME}/.zsh_history

Note: this is not a shell option but shell variable or parameter. I will
cover some more of those later, You can find a list of variables used by
zsh in the documentation.

The HISTFILE variable tells zsh where to store the history data. The syn-

tax ${ZDOTDIR:-$HOME} means it will use the value of ZDOTDIR when it is

set or default to the value of HOME otherwise. When a user has set the

ZDOTDIR variable to group their configurations files in a specific directo-

ry, the history will be stored there as well.

By default zsh simply writes each command in its own line in the histo-

ry file. You can view the file’s contents with any text editor or list the
last few commands:

% tail -n 10 ~/.zsh_history

You can make zsh add a bit more data (timestamp in unix epoch time

and elapsed time of the command) by setting the EXTENDED_HISTORY shell

option.

setopt EXTENDED_HISTORY

You can set limits on how many commands the shell should remember
in the session and in the history file with the HISTSIZE and SAVEHIST

variables:

SAVEHIST=5000
HISTSIZE=2000

http://zsh.sourceforge.net/Doc/Release/Parameters.html#Parameters-Used-By-The-Shell
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 7/9

When the shell reaches this limit the oldest commands will be removed
from memory or the history file.

By default, when you exit zsh (for example, by closing the window or

tab) this particular instance of zsh will overwrite an existing history file

with its history. So when you have multiple Terminal windows or tabs
open, they will all overwrite each others’ histories eventually.

You can tell zsh to use a single, shared history file across the sessions

and append to it rather than overwrite:

share history across multiple zsh sessions
setopt SHARE_HISTORY
append to history
setopt APPEND_HISTORY

Furthermore, you can tell zsh to update the history file after every com-

mand, rather than waiting for the shell to exit:

adds commands as they are typed, not at shell exit
setopt INC_APPEND_HISTORY

When you use a shared history file, it will grow very quickly, and you
may want to use some options to clean out duplicates and blanks:

expire duplicates first
setopt HIST_EXPIRE_DUPS_FIRST
do not store duplications
setopt HIST_IGNORE_DUPS
#ignore duplicates when searching
setopt HIST_FIND_NO_DUPS
removes blank lines from history
setopt HIST_REDUCE_BLANKS

(some of these are redundant)

Most of the time you will access the history with the up arrow key to re-
call the last command, or maybe a few more steps. You can search
through the history with ctrl-R

In zsh, you can also use the !! history substitution, which will be re-

placed with the entire last command. This is most commonly used in
combination with sudo:

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 8/9

% systemsetup -getRemoteLogin
You need administrator access to run this tool... exiting!
% sudo !!
sudo systemsetup -getRemoteLogin
Password:
Remote Login: On

By default, the shell will show the command it is substituting before it is
run. But at that point, it is too late to make any changes. When you set
the HIST_VERIFY option, zsh will show the substituted command in the

prompt instead, giving you a chance to edit or cancel it, or just confirm
it.

% systemsetup -getRemoteLogin
You need administrator access to run this tool... exiting!
% sudo !!
% sudo systemsetup -getRemoteLogin
Password:
Remote Login: On

This works for other history substitutions such as !$ or !*, as well. You

can find all of zsh’s history expansions in the documentation.

Correction

When you mistype a command or path, the shell is usually unforgiving.
In zsh you can enable correction. Then, the shell will make a guess of

what you meant to type and ask whether you want do that instead:

% systemprofiler
zsh: correct 'systemprofiler' to 'system_profiler' [nyae]?

Your options are to

n: execute as typed

y: accept and execute the suggested correction

a: abort and do nothing

e: return to the prompt to continue editing

I have found this far less annoying and far more useful than I expected.
Especially, since it works together with AUTO_CD:

http://zsh.sourceforge.net/Doc/Release/Expansion.html#History-Expansion

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 9/9

% Dekstop
zsh: correct 'Dekstop' to 'Desktop' [nyae]?

You enable zsh correction with these options:

setopt CORRECT
setopt CORRECT_ALL

Reverting to defaults

Most of the changes mentioned here affect the interactive shell and will
have little impact on zsh scripts. However, there are some options that

do affect the behavior of things like variable substitutions which will af-
fect scripts.

You can revert the options for the current shell to the default settings
with the following command:

emulate -LR zsh

We encountered this command earlier when we listed the default set-
tings. The -l option will list the settings rather than apply them.

If in doubt, it may be useful to add this at the beginning of your zsh

scripts.

Next

In the next part we will take a look at aliases and functions.

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 1/5

Moving to zsh, part 4: Aliases and Functions

Apple has announced that in macOS 10.15 Catalina the default shell will be zsh.

In this series, I will document my experiences moving bash settings, configurations,

and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions (this article)
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded with more

detail and topics. Like my other books, I plan to update and add to it

after release as well, keeping it relevant and useful. You can order it on

the Apple Books Store now.

As I have mentioned in the earlier posts, I am aware that there are many solutions
out there that give you a pre-configured ‘shortcut’ into lots of zsh goodness. But I am

interested in learning this the ‘hard way’ without shortcuts. Call me old-fashioned.
(“Uphill! In the snow! Both ways!”)

Aliases

Aliases in zsh work just like aliases in bash. You declare an alias with the alias (built-

in) command and it will work as a text replacement at the beginning of the com-
mand prompt:

alias ll='ls -al'

You can just copy your alias declarations from your .bash_profile or .bashrc to your

.zshrc. I had aliases for .. and cd.. which are now handled by Auto CD and shell cor-

rection respectively, so I didn’t bother to move those. (part 3: ‘Shell Options’)

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX
https://scriptingosx.com/2017/05/configuring-bash-with-aliases-and-functions/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 2/5

After the alias is declared, you can use it at the beginning of a command. When you
try to use the alias anywhere else in the command, the alias will not work:

% sudo ll
sudo: ll: command not found

Global Aliases

This is where zsh has an advantage. You can declare an alias as a ‘global’ alias, and

then will be replaced anywhere in the command line:

% alias -g badge='tput bel'
% sudo badge #<beeps> with privilege

Identifying Aliases

There is one more feature of zsh that is useful with aliases. The which command will

show if a command stems from an alias substitution:

% which ll
ll: aliased to ls -l

However, when you try this with global aliases, the substitution occurs before the
which command can evaluate the alias, which leads to an unexpected result:

% which badge
/usr/bin/tput
bel not found

You can suppress the alias substitution by escaping the first character or by quoting
the entire alias name:

% which \badge
badge: globally aliased to tput bel
% which 'badge'
badge: globally aliased to tput bel

Functions

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 3/5

As with aliases, functions in your zsh configuration will work just as they did in bash.

function vnc() {
 open vnc://"$USER"@"$1"
}

This code in your zsh configuration file will define the vnc function and make it avail-

able in the shell.

Autoload Functions

However, zsh has some features which make using functions more flexible. There is

(once again) a bit of configuration required to get this working.

Instead of declaring the function directly the configuration file, you can put the func-
tion in a separate file. zsh has a built-in variable called fpath which is an array of

paths where zsh will look for files defining a function. You can add your own directo-

ry to this search path:

fpath+=~/Projects/dotfiles/zshfunctions

Just having a file in the directory is not enough. You still have to tell zsh that you

want to use this particular function:

autoload vnc

This command tells zsh: “’Declare a function named vnc. To execute it, load a file

named vnc, it is somewhere in the fpath.”

Note: you often see the -U or -Uz option added to the autoload command. These op-

tions help avoid conflicts with your personal settings. They suppress alias substitu-
tion and ksh-style loading of functions, respectively.

The vnc file in my zshfunctions directory can look like this:

uses the arguments as hostnames for `open vnc://` (Screen Sharing)
uses the $USER username as default account name

for x in $@; do
 open vnc://"$USER"@"$x"
done

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 4/5

The vnc function will open a Screen Sharing session with the current user name pre-

filled in.

Initializing Autoload Functions

You could also put the code in the function file into a function block:

function vnc() {
 for x in $@; do
 open vnc://"$vnc_user"@"$x"
 done
}

initialization code
vnc_user="remote_admin"
alias screen_sharing='vnc'

The function name should match the function name declared with autoload.

When you have additional code outside the function, the autoload behavior changes.

When the function is called for the first time, the function will be defined and the
code outside the function will be run. The function itself will not be executed on the
first run. On subsequent calls, the function will be executed and the code outside the
function is ignored.

You can use this to provide setup and initialization code for the function. You can
even have more functions defined in the function file. The above example declares
and sets a variable to use for account name and an alias for the vnc command.

Since you have to run the function once for the initialization, you often see this syn-
tax in the zsh configuration file:

autoload vnc && vnc

Which means ‘declare the function and if that succeeds run it.’

In some functions, the initialization code will already launch the function itself:

function vnc() {
 ...
}

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 5/5

initialization
vnc_user="remote_admin"
vnc()

Since the behavior will vary from each autoloaded function to the next, be sure to

study any documentation or the function’s code.

Identifying Functions

Finally, the which command will show the function code:

 % which vnc
vnc () {
 for x in $@
 do
 open vnc://"$USER"@"$x"
 done
}

The functions command without any parameters, will print all functions (there will

be a lot of them). Use functions + to just list the function names.

Debugging Functions

When you are working on complex autoloaded functions, you will at some point
have to do some debugging. You can enable tracing for functions with

% functions -t vnc
% vnc Client.local
+vnc:1> x=Client.local
+vnc:2> open vnc://armin@Client.local

You can disable tracing for this function with functions +t vnc.

Next

In the next part we will enable, use and configure tab completions.

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 1/8

Moving to zsh, part 5: Completions

Apple has announced that in macOS 10.15 Catalina the default shell will be zsh.

In this series, I will document my experiences moving bash settings, configurations,

and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions (this article)
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

I am preparing a book on this topic, reworked and expanded with

more detail and topics. Like my other books, I plan to update and add

to it after release as well, keeping it relevant and useful. You can pre-

order it on the Apple Books Store now.

As I have mentioned in the earlier posts, I am aware that there are many solutions
out there that give you a pre-configured ‘shortcut’ into lots of zsh goodness. But I am

interested in learning this the ‘hard way’ without shortcuts. Call me old-fashioned.
(“Uphill! In the snow! Both ways!”)

What are Completions?

Man shells use the tab key (⇥) for completion. When you press that key, the shell
tries to guess what you are typing and will complete it, or if the beginning of what
you typed is ambiguous, suggest from a list of possible completions.

For example when you want to cd to your Documents folder, you can save typing:

% cd ~/Doc⇥
% cd ~/Documents/

When you hit the tab key, the system will complete the path to the Documents folder.

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 2/8

When the completion is ambiguous, the shell will list possible completions:

% cd ~/D⇥
Desktop/ Documents/ Downloads/

At this point, you can add a character or two to get to a unique completion, and hit
the tab key again. In zsh you can also hit the tab key repeatedly to cycle through the

suggested completions. In this example, the first tab keystroke will show the list, the
second will complete ~/Desktop/, the third completes ~/Documents, and so on.

You can use tab completion commands as well:

% system⇥
system_profiler systemkeychain systemsetup
systemsoundserverd systemstats
% system_⇥
% system_profiler

Not having to type path and file names saves time and avoids errors, especially with
complex paths with spaces and other special characters:

% cd ~/Li⇥
% cd ~/Library/Appl⇥
% cd ~/Library/Application S⇥
Application Scripts/ Application Support/
% cd ~/Library/Application Su⇥
% cd ~/Library/Application Support/

Using tab completion is a huge productivity boost when using a shell.

Turning It On

In the default configuration, tab completion in zsh is very basic. It will complete com-

mands and paths, but not much else. But you can enable a very powerful, and useful
completion system.

zsh comes with a tool you can use to setup this completion system. When you run the

compinstall command it will lead you through a complex and hard to understand list

of menus which explains the options and will generate the code necessary to set this
configuration up and add it to your .zshrc file or another configuration file of your

choice.

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 3/8

Since the commands to configure the completion are quite arcane and hard to under-
stand, this is a good way to get something to start out with. I will explain some of
these options and commands in detail.

Whether you use compinstall or not, to turn on the more powerful completion

system, you need to add at least this command to yourzsh` configuration file:

autoload -Uz compinit && compinit

This will initialize the zsh completion system. The details of this system are docu-

mented here.

If you want to configure the system, the configuration commands (usually zstyle

commands) should be added to the zsh configuration file before you enable the sys-

tem. (This only matters for a few configurations, but as a general rule it is safer.)

All of these completion rules need to be loaded and prepared. zsh’s completion sys-

tem creates a cache in the file ~/.zcompdump. The first time you run compinit it might

take a noticeable time, but subsequent runs should use this cache and be much
faster.

Sometimes, especially when building and debugging your own completion files, you
may need to delete this file to force a rebuild:

% rm -f ~/.zcompdump
% compinit

Case Insensitive Completion

Since the macOS file systems are usually case-insensitive, I prefer my tab-completion
to be case-insensitive as well. For bash you configure that in the ~/.inputrc. In zsh

you modify the completion systems behavior with this (monstrous) command:

case insensitive path-completion
zstyle ':completion:*' matcher-list 'm:{[:lower:][:upper:]}={[:upper:]
[:lower:]}' 'm:{[:lower:][:upper:]}={[:upper:][:lower:]} l:|=* r:|=*' 'm:
{[:lower:][:upper:]}={[:upper:][:lower:]} l:|=* r:|=*' 'm:{[:lower:]
[:upper:]}={[:upper:][:lower:]} l:|=* r:|=*'

http://zsh.sourceforge.net/Doc/Release/Completion-System.html#Completion-System
https://scriptingosx.com/2016/04/make-tab-completion-in-bash-case-insensitive/

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 4/8

I have seen many varieties for this configuration in different websites, but this is
what compinstall adds when I select case-insensitive completion, so I am going with

that.

Partial Completion

This is a particularly nice feature. You can type fragments of each path segment and
the completion will try to complete them all at once:

% cd /u/lo/b⇥
% cd /usr/local/bin

% cd ~/L/P/B⇥
% ~/Library/Preferences/ByHost/

If the fragments are ambiguous, there are different strategies to what the completion
system suggests. I have configured these like this:

partial completion suggestions
zstyle ':completion:*' list-suffixes
zstyle ':completion:*' expand prefix suffix

Commands with built-in completion

zsh comes with several completion definitions for many commands. For example,

when you type cp and then hit tab, the system will correctly assume you want to

complete a file path and show the suggestions from the current working directory.

However, when you type cp -⇥ the completion can tell from the - that you want to

add an option to the command and suggest a list of options for cp, with short

descriptions.

% cp -⇥
-H -- follow symlinks on the command line in recursive mode
-L -- follow all symlinks in recursive mode
-P -- do not follow symlinks in recursive mode (default)
-R -- copy directories recursively
-X -- don't copy extended attributes or resource forks
-a -- archive mode, same as -RpP
-f -- force overwriting existing file
-i -- confirm before overwriting existing file

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 5/8

-n -- don't overwrite existing file
-p -- preserve timestamps, mode, owner, flags, ACLs, and extended attributes
-v -- show file names as they are copied

As the context of command prompt you are assembling changes, you may get differ-
ent completion suggestions. For example, the completion for ssh will suggest host

names:

% ssh armin@⇥

zsh comes with completion definitions for many common commands. Nevertheless,

it can be helpful to just hit tab, especially when wondering about options.

On macOS completions are stored in /usr/share/zsh/5.3/functions (replace the5.3

with 5.7.1 in Catalina). This directory stores many functions used with zsh and is in

the default fpath. All the files in that directory that start with an underscore _ con-

tain the completion definitions command. So, the file _cp contains the definition for

the cp command. (Some of the definition files contain the definitions for multiple

commands.)

Completions for macOS Commands

There are even a few macOS specific command that come with the default zsh

installation.

% system_profiler ⇥⇥

macOS High Sierra and macOS Mojave come with zsh 5.3, which is now nearly two

years old. zsh 5.3 contains less macOS specific completion definitions than the cur-

rent zsh 5.7.1 which will is the pre-installed zsh in macOS Catalina. Some of the com-

pletions in 5.3 have also been updated in 5.7.1.

Tool zsh 5.3 zsh 5.7.1

caffeinate √

defaults √ √

fink √ √

fs_usage √

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 6/8

Tool zsh 5.3 zsh 5.7.1

hdiutil √ √

mdfind √

mdls √

mdutil √

networksetu

p

√

nvram √

open √ √

osascript √

otool √

pbcopy/pbpas
te

√

plutil √

say √

sc_usage √

scselect √

scutil √

softwareupd

ate

√ √

sw_vers √

swift √

system_prof

iler

√ √

xcode_selec

t

√

Load bash completions

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 7/8

Since the default shell on macOS has been bash for so long, there are quite a few bash

completion definitions for macOS commands and third party tools available. For ex-
ample Tony Williams’ bash completion for autopkg (post, Github).

You do not have to rewrite these completions, since the zsh completion system can

use bash completion scripts as well: (add this to your zsh configuration file)

load bashcompinit for some old bash completions
autoload bashcompinit && bashcompinit

[[-r ~/Projects/autopkg_complete/autopkg]] && source
~/Projects/autopkg_complete/autopkg

When you have multiple bash completion scripts you want to load, you only need to

load bashcompinit once.

Build your own completions

Once you start using completions, you will want to have them everywhere. While
many built-in completions exists, there are still many commands that lack a good
definition.

Some commands, like the swift command line tool, have a built-in option to generate

the completion syntax. You can then store that in a file and put it in your fpath:

% swift package completion-tool generate-zsh-script >_swift

Note: in the case of swift, its definition will conflict with the

_openstack definition in zsh 5.3. You can fix this with the command

compdef _swift swift after loading the completion system.

Some commands provide a list of options and arguments with the -h/--help option. If

this list follows a certain syntax, you can get a decent completion working with

% compdef _gnu_generic <command>

One example on macOS, where this has decent results is the xed command which

opens a file or folder in Xcode.

https://macintoshguy.wordpress.com/2017/05/15/bash-completion-for-autopkg/
https://github.com/Honestpuck/autopkg_complete

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 8/8

But for best results, you will often have to build the description yourself. Unfortu-
nately this is not a simple task. The syntax is meticulously, but also quite abstractly
documented in the zsh documentation for the Completion System. I also found the

‘howto’ documentation in the zsh-completions repository very useful, as well as the

‘zsh Completion Style Guide.’

To avoid everyone re-inventing the wheel, I have started a repository on Github for
macOS specific completion files. The page has the instructions on how to install them
and I will welcome pull requests with contributions. Since I am just starting to learn
this as well, I am sure there are improvements that can be made on the completions I
have built so far and there are several commands where you can test your skills and
build a new one.

I suggest the #zsh channel on the MacAdmins Slack for discussion.

Next

In the next post in this series, we will discuss how to configure zsh’s command line

prompt.

http://zsh.sourceforge.net/Doc/Release/Completion-System.html
https://github.com/zsh-users/zsh-completions/blob/master/zsh-completions-howto.org
https://github.com/zsh-users/zsh/blob/master/Etc/completion-style-guide
https://github.com/scriptingosx/mac-zsh-completions
http://macadmins.org/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 1/7

Moving to zsh, part 6 – Customizing the zsh
Prompt

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt (this article)

Part 7: Miscellanea
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

As I have mentioned in the earlier posts, I am aware that there are
many solutions out there that give you a pre-configured ‘shortcut’ into
lots of zsh goodness. But I am interested in learning this the ‘hard way’

without shortcuts. Call me old-fashioned. (“Uphill! In the snow! Both
ways!”)

The default bash prompt on macOS is quite elaborate. It shows the user-

name, the hostname, and the current directory.

Calypso:~ armin$

On the other hand, the default bash prompt doesn’t show the previous
command’s exit code, a piece of information I find very useful. I have
written before how I re-configured my bash prompt to have the infor-

mation I want:

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 2/7

Minimal Terminal Prompt
Show Exit Code in your bash Prompt

Of course, I wanted to recreate the same experience in zsh.

The only (visual) difference to my bash prompt is the % instead of the $.

Note: creating a file ~/.hushlogin will suppress the status

message at the start of each Terminal session in zsh as well

as in bash (or any other shell).

Basic Prompt Configuration

The basic zsh prompt configuration works similar to bash, even though

it uses a different syntax. The different placeholders are described in
detail in the zsh manual.

zsh uses the same shell variable PS1 to store the default prompt. Howev-

er, the variable names PROMPT and prompt are synonyms for PS1 and you

will see either of those three being used in various examples. I am going
to use PROMPT.

The default prompt in zsh is %m%#. The %m shows the first element of the

hostname, the %# shows a # when the current prompt has super-user

https://scriptingosx.com/2017/07/minimal-terminal-prompt/
https://scriptingosx.com/2019/05/show-exit-code-in-your-bash-prompt/
http://zsh.sourceforge.net/Doc/Release/Prompt-Expansion.html#Prompt-Expansion

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 3/7

privileges (e.g. after a sudo -s) and otherwise the % symbol (the default

zsh prompt symbol).

The zsh default prompt is far shorter than the bash default, but even less

useful. Since I work on the local system most of the time, the hostname
bears no useful information, and repeating it every line is superfluous.

Note: you can argue that the hostname in the prompt is

useful when you frequently have multiple terminal

windows open to different hosts. This is true, but then the

prompt is defined by the remote shell and its configuration

files on the remote host. In your configuration file, you can

test if the SSH_CLIENT variable is set and show a different

prompt for remote sessions. There are more ways of

showing the host in remote shell sessions, for example in

the Terminal window title bar or with different window

background colors.

In our first iteration, I want to show the current working directory in-
stead of the hostname. When you look through the list of prompt place-
holders in the zsh documentation, you find %d, %/, and %~. The first two

do exactly the same. The last substitution will display a path that starts
with the user’s home directory with the ~, so it will shorten

/Users/armin/Projects/ to ~/Projects.

Note: in the end you want to set your PROMPT variable in the

.zshrc file, so it will take effect in all your zsh sessions. For

testing, however, you can just change the PROMPT variable in

the interactive shell. This will give you immediate feedback,

how your current setup works.

% PROMPT='%/ %# '
/Users/armin/Projects/dotfiles/zshfunctions %

% PROMPT='%~ %# '
~/Projects/dotfiles/zshfunctions %

Note the trailing space in the prompt string, to separate the final % or #

from the command entry.

http://zsh.sourceforge.net/Doc/Release/Prompt-Expansion.html#Prompt-Expansion

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 4/7

I prefer the shorter output of the %~ option, but it can still be quite long,

depending on your working directory. zsh has a trick for this: when you

insert a number n between the % and the ~, then only the last n elements

of the path will be shown:

% PROMPT='%2~ %# '
dotfiles/zshfunctions %

When you do %1~ it will show only the name of the working directory or

~ if it is the home directory. (This also works with %/, e.g. %2/.)

Adding Color

Adding a bit of color or shades of gray to the prompt can make it more
readable. In bash you need cryptic escape codes to switch the colors. zsh

provides an easier way. To turn the directory in the path blue, you can
use:

PROMPT='%F{blue}%1~%f %# '

The F stands for ‘Foreground color.’ zsh understands the colors black,

red, green, yellow, blue, magenta, cyan and white. %F or %f resets to the de-

fault text color. Furthermore, Terminal.app represents itself as a 256-
color terminal to the shell. You can verify this with

% echo $TERM
xterm-256color

You can access the 256 color pallet with %F{0} through %F{255}. There

are tables showing which number maps to which color:

256 Colors – Cheat Sheet – Xterm, HEX, RGB, HSL
256 Terminal colors and their 24bit equivalent (or similar)

So, since I want a dark gray for my current working dir in my prompt, I
chose 240, I also set it to bold with the %B code:

PROMPT='%B%F{240}%1~%f%b %# '

https://jonasjacek.github.io/colors/
https://www.calmar.ws/vim/256-xterm-24bit-rgb-color-chart.html

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 5/7

You can find a detailed list of the codes for visual effects in the docu-
mentation.

Dynamic Prompt

I wrote an entire post on how to get bash to show the color-coded exit

code of the last command. As it turns out, this is much easier in zsh.

One of the prompt codes provides a ‘ternary conditional,’ which means
it will show one of two expressions, depending on a condition. There
are several conditions you can use. Once again the details can be found
in the documentation.

There is one condition for the previous commands exit code:

%(?.<success expression>.<failure expression>)

This expression will use the <success expression> when the previous

command exited successfully (exit code zero) and <failure expression>

when the previous command failed (non-zero exit code). So it is quite
easy to build an conditional prompt:

% PROMPT='%(?.√.?%?) %1~ %# '
√ ~ % false
?1 ~ %

You can get the √ character with option-V on the US or international

macOS keyboard layout. The last part of the ternary ?%? looks confusing.

The first ? will print a literal question mark, and the second part %? will

be replaced with previous command’s exit code.

You can add colors in the ternary expression as well:

PROMPT='%(?.%F{green}√.%F{red}?%?)%f %B%F{240}%1~%f%b %# '

Another interesting conditional code is ! which returns whether the

shell is privileged (i.e. running as root) or not. This allows us to change
the default prompt symbol from % to something else, while maintaining

the warning functionality when running as root:

http://zsh.sourceforge.net/Doc/Release/Prompt-Expansion.html#Visual-effects
https://scriptingosx.com/2019/05/show-exit-code-in-your-bash-prompt/
http://zsh.sourceforge.net/Doc/Release/Prompt-Expansion.html#Conditional-Substrings-in-Prompts

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 6/7

% PROMPT='%1~ %(!.#.>) '
~ > sudo -s
~ # exit
~ >

Complete Prompt

Here is the complete prompt we assembled, with all the parts
explained:

PROMPT='%(?.%F{green}√.%F{red}?%?)%f %B%F{240}%1~%f%b %# '

%(?.√.?%?) if return code ? is 0, show √, else

show ?%?

%? exit code of previous command

%1~ current working dir, shortening
home to ~, show only last 1

element

%# # with root privileges, % otherwise

%B %b start/stop bold

%F{...} text (foreground) color, see table

%f reset to default textcolor

Right Sided Prompt

zsh also offers a right sided prompt. It uses the same placeholders as the

‘normal’ prompt. Use the RPROMPT variable to set the right side prompt:

% RPROMPT='%*'
√ zshfunctions % 11:02:55

zsh will automatically hide the right prompt when the cursor reaches it

when typing a long command. You can use all the other substitutions
from the left side prompt, including colors and other visual markers in
the right side prompt.

https://www.calmar.ws/vim/256-xterm-24bit-rgb-color-chart.html

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 7/7

Git Integration

zsh includes some basic integration for version control systems. Once

again there is a voluminous, but hard to understand description of it in
the documentation.

I found a better, more specific example in the ‘Pro git’ documentation.
This example will show the current branch on the right side prompt.

I have changed the example to include the repo name and the branch,
and to change the color.

autoload -Uz vcs_info
precmd_vcs_info() { vcs_info }
precmd_functions+=(precmd_vcs_info)
setopt prompt_subst
RPROMPT=\$vcs_info_msg_0_
zstyle ':vcs_info:git:*' formats '%F{240}(%b)%r%f'
zstyle ':vcs_info:*' enable git

In this case %b and %r are placeholders for the VCS (version control sys-

tem) system for the branch and the repository name.

There are git prompt solutions other than the built-in module, which

deliver more information. There is a script in the git repository, and

many of the larger zsh theme projects, such as ‘oh-my-zsh’ and ‘prezto’

have all kinds of git status widgets or modules or themes or what ever
they call them.

Summary

You can spend (or waste) a lot of time on fine-tuning your prompt.
Whether these modifications really improve your productivity is a mat-
ter of opinion.

In the next post, we will cover some miscellaneous odds and ends that
haven’t yet really fit into any of preceding posts.

http://zsh.sourceforge.net/Doc/Release/User-Contributions.html#Version-Control-Information
https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-Zsh
https://github.com/git/git/blob/master/contrib/completion/git-prompt.sh
https://ohmyz.sh/
https://github.com/sorin-ionescu/prezto
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 1/6

Moving to zsh – part 7: Miscellanea

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea (this article)
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

As I have mentioned in the earlier posts, I am aware that there are
many solutions out there that give you a pre-configured ‘shortcut’ into
lots of zsh goodness. But I am interested in learning this the ‘hard way’

without shortcuts. Call me old-fashioned. (“Uphill! In the snow! Both
ways!”)

We have covered the general aspects of configuring your zsh environ-

ment and enabling some of its features to make your work more pro-
ductive. However, there are zsh features that didn’t quite fit in earlier

posts, but also don’t warrant a post of their own. So I am gathering
them here.

multiIO

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 2/6

Terminal commands can take input from a file or a previous command
(stdin) and have two different outputs: stdout and stderr. In bash you

can redirect each of these to a single other destination.

For example, you can redirect the output of a command to a file:

% system_profiler SPHardwareDataType >hardwareinfo.txt

In zsh you can redirect to (and from) multiple sources. In the simplest

form you can write the output to two files:

% system_profiler SPHardwareDataType >hardwareinfo.txt
>computerinfo.txt

This is of course not a very realistic case. Since the pipe | is a form of re-

direction, you can combine output to a file with a pipe:

% system_profiler SPHardwareDataType >hardwareprofile.txt | cat

Instead of piping to cat, you can also redirect to stdout (or &1) as well as

to a file:

% system_profiler SPHardwareDataType >&1 >hardwareprofile.txt

Note that the order of doing this is important. The construct >file.txt

>&1 would redirect the output to file.txt and then redirect the output

again to where stdout or 1 is going, so it would be redundant.

When combined with pipes and other commands multiIO can become
very useful:

% system_profiler SPHardwareDataType >hardwareprofile.txt | awk
'/Serial Number/ { print $4 }' >&1 >serialnumber.txt

You can use multiIO for input as well:

% sort </usr/share/calendar/calendar.freebsd
</usr/share/calendar/calendar.computer

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 3/6

And while this not directly related, but somewhat close, in zsh, this

% <hardwareinfo.txt

is equivalent to more hardwareinfo.txt.

Recursive Globbing with **

You can use the ** to denote an arbitrary string that can span multiple

directories in a path.

For example:

% echo Library/Preferences/**/com.apple.screensaver.*plist
Library/Preferences/ByHost/com.apple.screensaver.BBCCDDEE-AABB-
CCDD-ABCD-00AABBCCDDEE.plist
Library/Preferences/com.apple.screensaver.plist

In this case the ** matches nothing as well as /ByHost/.

Note: when used on large folder structures this glob can take a while. So
use with care.

Connected array Variables

We already encountered the fpath variable in earlier posts. You can see

its contents with the echo command:

% echo $fpath
/Users/armin/Projects/mac-zsh-completions/completions/
/Users/armin/Projects/dotfiles/zshfunctions
/usr/local/share/zsh/site-functions /usr/share/zsh/site-functions
/usr/share/zsh/5.3/functions

Interestingly enough, zsh also has an FPATH variable, which is a colon-

separated list of directories:

% echo $FPATH
/Users/armin/Projects/mac-zsh-
completions/completions/:/Users/armin/Projects/dotfiles/zshfuncti

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 4/6

ons:/usr/local/share/zsh/site-functions:/usr/share/zsh/site-
functions:/usr/share/zsh/5.3/functions

Since the fpath variable is an array, I only changed the fpath variable in

my zshrc.I never set or changed the FPATH, yet it reflects the changes

made to the fpath variable.

When you see the type of both variables, you get an idea that something
is going on:

% echo ${(t)fpath}
array-special
% echo ${(t)FPATH}
scalar-special

The fpath and FPATH are connected in zsh. Changes to one affect the oth-

er. This allows use of more flexible and powerful array operations
through the fpath ‘aspect’ of the value, but also provides compatibility

to tools that expect the traditional colon-separated format in FPATH.

You will not be surprised to hear that zsh uses the same ‘magic’ with the

PATH variable and its array counterpart path.

This means that you can continue to use path_helper to get your PATH

from the files in /etc/paths and /etc/paths.d. (Well, you don’t have to,

because on macOS this is done for all users in /etc/zprofile.) But then

you can manipulate the path variable with array functions, like:

path+=~/bin

You get the useful aspects of both syntaxes.

Suffix Aliases

I learnt this one after writing the aliases part.

Suffix aliases take effect on the last part of a path, so usually the file ex-
tension. A suffix alias will assign a command to use when you just type
a file path in the command line.

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 5/6

For example, you can a suffix alias for the txt file extension:

alias -s txt="open -t"

When you then type a path ending with .txt and no command, zsh will

execute open -t /path/to/file.txt.

The open -t command opens a file in the default application set for the

txt file extension in Finder. You probably want to set the suffix alias to

bbedit or atom or something like that rather than open -t.

You can use other command line tools for the suffix alias:

alias -s log="tail -f"

Then, typing /var/log/install.log will show the last lines of that file

and update the output when the file changes. If you prefer the graphical
user interface, you can use the open -a command to assign suffix aliases

to applications:

alias -s log="open -a Console"

You can even create a suffix alias using a different alias:

alias pacifist="open -a Pacifist"
alias -s pkg=pacifist

Together with the AutoCD option, this can improve your application-
shell interactions a lot.

Bindkey for History Search

Most of the keyboard shortcuts in zsh work the same way as they do in

bash. I have found one change that has proven quite useful:

^[[A' up-line-or-search # up arrow bindkey

^[[B' down-line-or-search # down arrow

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 6/6

These two commands will change the behavior of the up and down ar-
row keys from just switching to the previous command, to searching.

This means that when you start typing a command and then hit the up
key, rather than just replacing what you already typed with the previ-
ous command, the shell will instead search for the latest command in
the history starting with what you already typed.

There are many commands or ‘widgets’ you can assign to keystrokes
with the bindkey command. You can find a list of default ‘widgets’ in the

documentation.

Conclusion

This concludes the part of the series about configuring zsh. When I set

out I wanted to recreate the environment I had built in bash. Along the

way I found a few features in zsh that seemed worth adding to my

toolkit.

After nearly two months of working in zsh, there are already some fea-

tures I would miss terribly when switching back to bash or a plain, un-

configured zsh. Most important is the powerful tab-completion. But fea-

tures like AutoCD, MultiIO, and flexible aliases, are useful tools as well.

The dynamic loading of functions from files in the fpath was initially

confusing, but it allows configurations and functions to be split out into
their own, which simplifies “modularizing” and sharing.

In the next (and last) post, I will cover the changes when scripting with
zsh vs bash.

http://zsh.sourceforge.net/Doc/Release/Zsh-Line-Editor.html#Standard-Widgets
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 1/9

Moving to zsh, part 8 – Scripting zsh

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh

Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh (this article)

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

This is the final article in this series. (If I ever announce an eight part
series again, please somebody intervene!) However, I am quite sure it
will not be the last post on zsh

All the previous posts described how zsh works as an interactive shell.

The interactive shell is of course the most direct way we use a shell and
configuring the shell to your taste can bring a huge boost in usefulness
and productivity.

The other, equally, important aspect of a shell is running script files. In
the simplest perspective, script files are just series of interactive com-
mands, but of course they will get complex very quickly.

sh, bash, or zsh?

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 2/9

Should you even script in zsh? The argument for bash has been that it

has been pre-installed on every Mac OS X since 10.2. The same is true
for zsh, with one exception: the zsh binary is not present on the Recov-

ery system. It is also not present on a NetInstall or External Installation
System, but these are less relevant in a modern deployment workflow,
which has to work with Secure Boot Macs.

If you plan to run a script from Recovery, such as an installr or

bootstrappr script or as part of an MDS workflow, your only choices are

/bin/sh and /bin/bash. The current /bin/bash binary is 12 years old, and

Apple is messaging its demise. I would not consider that a future proof
choice. So, if your script may run in a Recovery context, i would recom-
mend /bin/sh over either /bin/bash or /bin/zsh

Since installation packages can be run from the Recovery context as
well, and you cannot really always predict in which context your pack-
age will be used, I would extend the recommendation to use /bin/sh for

all installation scripts as well.

While sh is surely ubiquitous, it is also a ‘lowest common denominator’,

so it is not a very comfortable scripting language to work in. I recom-
mend using shellcheck to verify all your sh scripts for bashisms that

might have crept in out of habit.

When you can ensure your script will only run on a full macOS installa-
tion, zsh is good choice over sh. It is pre-installed on macOS, and it offers

better and safer language options than sh and some advantages over

bash, too. Deployment scripts, scripts pushed from management sys-

tems, launch daemons and launch agents, and script you write to auto-
mate your admin workflows (such as building packages) would fall in
this category.

You can also choose to stick with bash, but then you should start in-

stalling and using your own bash 5 binary instead of the built in

/bin/bash. This will give you newer security updates and features and

good feeling that when Apple does eventually yank the /bin/bash bina-

ry, your scripts will keep working.

Admins who want to keep using Python for their scripts are facing a
similar problem. Once you choose to use a non-system version of bash

(or python), it is your responsibility to install and update it on all your

clients. But that is what system management tools are for. We will have

https://scriptingosx.com/2019/02/install-bash-5-on-macos/

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 3/9

to get used to managing our own tools as well as the users’ tools, instead
of relying on Apple.

Shebang

To switch your script from using bash to zsh, you have to change the she-

bang in the first line from #!/bin/bash to #!/bin/zsh.

If you want to distinguish your zsh script files, the you can also change

the script’s file extension from .sh to .zsh. This will be especially helpful

while you transfer scripts from bash to zsh (or sh). The file extension will

have no effect on which interpreter will be used to run the script. That
is determined by the shebang, but the extension provides a visible clue
in the Finder and Terminal.

zsh vs bash

Since zsh derives from the same Bourne shell family as bash does, most

commands, syntax, and control structures will work just the same. zsh

provides alternative syntax for some of the structures.

zsh has several options to control compatibility, not only for bash, but

for other shells as well. We have already seen that options can be used
to enable features specific for zsh. These options can significantly

change how zsh interprets your scripts.

Because you can never quite anticipate in which environment your par-
ticular zsh will be launched in, it is good practice to reset the options at

the beginning of your script with the emulate command:

emulate -LR zsh

After the emulate command, you can explicitly set the shell options your

script requires.

The emulate command also provides a bash emulation:

emulate -LR bash

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 4/9

This will change the zsh options to closely emulate bash behavior.

Rather than relying on this emulation mode, I would recommend actu-
ally using bash, even if you have to install and manage a newer version

yourself.

Word Splitting in Variable Substitutions

Nearly all syntax from bash scripts will ‘just work’ in zsh as well. There

are just a few important differences you have to be aware of.

The most significant difference, which will affect most scripts is how zsh

treats word splitting in variable substitutions.

Recap: bash behavior

In bash substituted variables are split on whitespace when the substitu-

tion is not quoted. To demonstrate, we will use a function that counts
the number of arguments passed into it. This way we can see whether a
variable was split or not:

#!/bin/bash
export PATH=/usr/bin:/bin:/usr/sbin:/sbin

function countArguments() {
 echo "${#@}"
}

wordlist="one two three four five"

echo "normal substitution, no quotes:"
countArguments $wordlist
-> 5

echo "substitution with quotes"
countArguments "$wordlist"
-> 1

In bash and sh the contents of the variable split into separate arguments

when substituted without the quotes. Usually you do not want the split-
ting to occur. Hence the rule: “always quote variable substitutions!”

zsh behavior: no splitting

https://scriptingosx.com/2019/02/install-bash-5-on-macos/

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 5/9

zsh will not split a variable when substituted. With zsh the contents of a

variable will be kept in one piece:

#!/bin/zsh
emulate -LR zsh # reset zsh options
export PATH=/usr/bin:/bin:/usr/sbin:/sbin

function countArguments() {
 echo "${#@}"
}

wordlist="one two three four five"

echo "normal substitution, no quotes:"
countArguments $wordlist
-> 1

echo "substitution with quotes"
countArguments "$wordlist"
-> 1

The positive effect of this is that you do not have to worry about quoting
variables all the time, making zsh less error prone, and much more like

other scripting and programming languages.

Splitting Arrays

The wordlist variable in our example above is a string. Because of this it

returns a count of 1, since there is only one element, the string itself.

If you want to loop through multiple elements of a list

In bash this happens, whether you want to or not, unless you explicitly

tell bash not to split by quoting the variable.

In zsh, you have to explicitly tell the shell to split a string into its compo-

nents. If you do this naïvely, by wrapping the string variable in the
parenthesis to declare and array, it will not work:

wordlist="one two three"
wordarray=($wordlist)

for word in $wordarray; do
 echo "->$word<-"
done

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 6/9

#output
->one two three<-

Note: the for loop echoes every item in the array. I have

added the -> characters to make the individual items more

visible. In the subsequent examples, I will not repeat the for

loop, but only show its output. So the above example will be

shortened to:

wordarray=($wordlist)
->one two three<-

There are few options to do this right.

Revert to sh behavior

First, you can tell zsh to revert to the bash or sh behavior and split on

any whitespace. You can do this by pre-fixing the variable substitution
with an =:

wordarray=(${=wordlist})
->one<-
->two<-
->three<-

Note: if you find yourself using the = frequently, you can also re-enable

sh style word splitting with the shwordsplit option. This will of course

affect all substitutions in the script until you disable the option again.

setopt shwordsplit
wordarray=($wordlist)
->one<-
->two<-
->three<-

This option can be very useful when you quickly need to convert a bash

script to a zsh script. But you will also re-enable all the problems you

had with unintentional word splitting.

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 7/9

Splitting Lines

If you want to be more specific and split on particular characters, zsh

has a special substitution syntax for that:

macOSversion=$(sw_vers -productBuild) # 10.14.6
versionParts=${(s/./)macOSVersion}
->10<-
->14<-
->6<-

If you want to split on a newline character \n the syntax is slightly

different:

citytext="New York
Rio
Tokyo"

cityarray=(${(ps/\n/)citytext})
->New York<-
->Rio<-
->Tokyo<-

Since newline is a common character to split text on, there is a short
cut:

cityarray=(${(f)citytext})

Since the newline character is a legal character in file names, you
should use zero-terminated strings where possible:

foundDirs=$(find /Library -type d -maxdepth 1 -print0)
dirlist=${(ps/\0/)foundDirs}

Again, there is a shortcut for this:

dirlist=${(0)foundDirs}

Array index starts at 1

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 8/9

Once you have split text into an array, remember, that in zsh array in-

dices start at 1:

% versionList=(${(s/./)$(sw_vers -productVersion)})
% echo ${versionList[1]}
10
% echo ${versionList[2]}
14
% echo ${versionList[3]}
6

If you think this is wrong and absolutely require a zero-based index,
you can set the KSH_ARRAYS shell option:

% setopt KSH_ARRAYS
% echo ${versionList[0]}
10
% echo ${versionList[1]}
14
% echo ${versionList[2]}
6
% echo ${versionList[3]}

Conclusion

Switching your scripts from bash to zsh requires a bit more work than

merely switching out the shebang. However, since /bin/bash will still be

present in Catalina, you do not have to move all scripts immediately.

Moving to sh instead of zsh can be safer choice, especially for package

installation scripts.

In zsh, there always seems to be some option to disable or enable a par-

ticular behavior.

This concludes my series on switching to zsh on macOS. I hope you

found it helpful.

After having worked with zsh for a few weeks, I already find some of its

features indispensable. I am looking forward to discovering and using
more features over time. When I do, I will certainly share them here.

2/21/2020 Moving to zsh, part 8 – Scripting zsh – Scripting OS X

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/ 9/9

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 1/5

Moving to zsh

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh (this article)
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

zsh (I believe it is pronounced zee-shell, though zish is fun to say) will

succeed bash as the default shell. bash has been the default shell since

Mac OS X 10.3 Panther.

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

Why?

The bash binary bundled with macOS has been stuck on version 3.2 for

a long time now. bash v4 was released in 2009 and bash v5 in January

2019. The reason Apple has not switched to these newer versions is that
they are licensed with GPL v3. bash v3 is still GPL v2.

zsh, on the other hand, has an ‘MIT-like’ license, which makes it much

more palatable for Apple to include in the system by default. zsh has

been available as on macOS for a long time. The zsh version on macOS

10.14 Mojave is fairly new (5.3). macOS 10.15 Catalina has the current
zsh 5.7.1.

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 2/5

Is bash gone!?

No.

macOS Catalina still has the same /bin/bash (version 3.2.57) as Mojave

and earlier macOS versions. This change is only for new accounts creat-
ed on macOS Catalina. When you upgrade to Catalina, a user’s default
shell will remain what it was before.

Many scripts in macOS, management systems, and Apple and third par-
ty installers rely on /bin/bash. If Apple just yanked this binary in macOS

10.15 Catalina or even 10.16. Many installers and other solutions would
break and simply cease to function.

Users that have /bin/bash as their default shell on Catalina will see a

prompt at the start of each Terminal session stating that zsh is now the

recommended default shell. If you want to continue using /bin/bash,

you can supress this message by setting an environment variable in
your .bash_profile or .bashrc.

export BASH_SILENCE_DEPRECATION_WARNING=1

You can also download and install a newer version of bash yourself.
Keep in mind that custom bash installations reside in a different direc-
tory, usually /usr/local/bin/bash.

Will bash remain indefinitely?

Apple is strongly messaging that you should switch shells. This is differ-
ent from the last switch in Mac OS X 10.3 Panther, when Apple switched
the default to bash, but didn’t really care if you remained on tcsh. In

fact, tcsh is still present on macOS.

Apple’s messaging should tell us, that the days of /bin/bash are num-

bered. Probably not very soon, but eventually keeping a more than ten
year old version of bash on the system will turn into a liability. The built-

in bash had to be patched in 2014 to mitigate the ‘Shellshock’ vulnera-
bility. At some point Apple will consider the cost of continued mainte-
nance too high.

https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/
https://scriptingosx.com/2019/02/install-bash-5-on-macos/

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 3/5

Another clue is that a new shell appeared on macOS Catalina (and is
mentioned in the support article). The ‘Debian Almquist Shell’ dash has

been added to the lineup of shells. dash is designed to be a minimal im-

plementation of the Posix standard shell sh. So far, in macOS (including

Catalina),sh invokes bash in sh-compatibility mode.

As Apple’s support article mentions, Catalina also adds a new mecha-
nism for users and admins to change which shell handles sh invoca-

tions. MacAdmins or users can change the symbolic link stored in
/var/select/sh to point to a shell other than /bin/bash. This changes

which shell interprets scripts the #!/bin/sh shebang or scripts invoked

with sh -c. Changing the interpreter for sh should not, but may change

the behavior of several crucial scripts in the system, management tools,
and in installers, but may be very useful for testing purposes.

All of these changes are indicators that Apple is preparing to remove
/bin/bash at some, yet indeterminate, time in the future.

Do I need to wait for Catalina to switch to zsh?

No, zsh is available Mojave and on older macOS versions. You can start

testing zsh or even switch your default shell already.

If you want to just see how zsh works, you can just open Terminal and

type zsh:

$ zsh
MacBook%

The main change you will see is that the prompt looks different. zsh

uses the % character as the default prompt. (You can change that, of

course.) Most navigation keystrokes and other behaviors will remain
the same as in bash.

If you want to already switch your default shell to zsh you can use the

chsh command:

$ chsh -s /bin/zsh

https://support.apple.com/en-us/HT208050

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 4/5

This will prompt for your password. This command will not change the
current shell, but all new ones, so close the current Terminal windows
and tabs and open a new one.

How is zsh different?

Like bash (‘Bourne again shell’), zshderives from the ‘Bourne’ family of

shells. Because of this common ancestry, it behaves very similar in day-
to-day use. The most obvious change will be the different prompt.

The main difference between bash and zsh is configuration. Since zsh ig-

nores the bash configuration files (.bash_profile or .bashrc) you cannot

simply copy customized bash settings over to zsh. zsh has much more

options and points to change zsh configuration and behavior. There is

an entire eco-system of configuration tools and themes called oh-my-zsh

which is very popular.

zsh also offers better configuration for auto-completion which is far eas-

ier than in bash.

I am planning a separate post, describing how to transfer (and trans-
late) your configurations from bash to zsh.

What about scripting?

Since zsh has been present on macOS for a long time, you could start

moving your scripts from bash to zsh right away and not lose backwards

compatibility. Just remember to set the shebang in your scripts to
#!/bin/zsh.

You will gain some features where zsh is superior to bash v3, such as ar-

rays and associative arrays (dictionaries).

There is one exception where I would now recommend to use /bin/sh

for your scripts: the Recovery system does not contain the /bin/zsh

shell, even on the Catalina beta. This could still change during the beta
phase, or even later, but then you still have to consider older macOS in-
stallations where zsh is definitely not present in Recovery.

https://ohmyz.sh/

2/21/2020 Moving to zsh – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh/ 5/5

Proudly powered by WordPress

When you plan to use your scripts or pkgs with installation scripts in a
Recovery (or NetInstall, or bootable USB drive) context, such as Twoca-
noes MDS, installr or bootstrappr, then you cannot rely on /bin/zsh.

Since we now know that bash is eventually going away, the only com-

mon choice left is /bin/sh.

When you build an installer package, it can be difficult to anticipate all
the contexts in which it might be deployed. So, for installation pre- and
postinstall scripts, I would recommend using /bin/sh as the shebang

from now on.

I used to recommend using /bin/bash for everything MacAdmin related.

/bin/sh is definitely a step down in functionality, but it seems like the

safest choice for continued support.

Summary

Overall, while the messaging from Apple is very interesting, the change
itself is less dramatic than the headlines. Apple is not ‘replacing’ bash

with zsh, at least not yet. Overall, we will have to re-think and re-learn a

few things, but there is also much to be gained by finally switching from
a ten-year-old shell to a new modern one!

This git repo has been shared by many on MacAdmins Slack:
rothgar/mastering-zsh, I will certainly dive into that and share about
my experiences here!

https://wordpress.org/
https://twocanoes.com/products/mac/mac-deploy-stick/
https://github.com/munki/installr
https://github.com/munki/bootstrappr
https://github.com/rothgar/mastering-zsh

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 1/6

Moving to zsh, part 2: Configuration Files

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files (this article)
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

In part one I talked about Apple’s motivation to switch the default shell
and urge existing users to change to zsh.

Since I am new to zsh as well, I am planning to document my process of

transferring my personal bash setup and learning the odds and ends of

zsh.

Many websites and tutorials leap straight to projects like oh-my-zsh or
prezto where you can choose from hundreds of pre-customized and
pre-configured themes.

While these projects are very impressive and certainly show off the
flexibility and power of zsh customization, I feel this will actually pre-

vent an understanding of how zsh works and how it differs from bash.

So, I am planning to build my own configuration ‘by hand’ first.

At first, I actually took a look at my current bash_profile and cleaned it

up. There were many aliases and functions which I do not use or broke

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX
https://scriptingosx.com/2019/06/moving-to-zsh/
https://ohmyz.sh/
https://github.com/sorin-ionescu/prezto

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 2/6

in some macOS update. I the end, this is what I want to re-create in zsh:

aliases
mostly shortcuts to open files with a specific application

functions
show man pages in a dedicated Terminal window
some more simple functions
get the frontmost Finder window path

shell settings
case-insensitive globbing
case-insensitive path-completion (for bash this is set in .inputrc)

command history, shared across windows and sessions
use BBEdit as the editor

prompt:
show current working dir
show a colored symbol showing the last command’s exit code
update the Terminal window title bar to show the cwd

Most of these should be fairly easy to transfer. Some might be…
interesting.

But first, where do we put our custom zsh configuration?

zsh Configuration Files

bash has a list of possible files that it tries in predefined order. I have

the description in my post on the bash_profile.

zsh also has a list of files it will execute at shell startup. The list of possi-

ble files is even longer, but somewhat more ordered.

all users user login
shell

interac-
tive shell

scripts Termi-
nal.app

/etc/zshe

nv

.zshenv √ √ √ √

/etc/zpro

file

.zprofile √ x x √

/etc/zshr

c

.zshrc √ √ x √

https://scriptingosx.com/2017/02/the-macos-open-command/
https://scriptingosx.com/2017/04/on-viewing-man-pages/
https://scriptingosx.com/2017/02/terminal-finder-interaction/
https://scriptingosx.com/2016/04/make-tab-completion-in-bash-case-insensitive/
https://scriptingosx.com/2017/07/minimal-terminal-prompt/
https://scriptingosx.com/2019/05/show-exit-code-in-your-bash-prompt/
https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 3/6

all users user login
shell

interac-
tive shell

scripts Termi-
nal.app

/etc/zlog

in

.zlogin √ x x √

/etc/zlog

out

.zlogout √ x x √

The files in /etc/ will be launched (when present) for all users. The .z*

files only for the individual user.

By default, zsh will look in the root of the home directory for the user

.z* files, but this behavior can be changed by setting the ZDOTDIR envi-

ronment variable to another directory (e.g. ~/.zsh/) where you can then

group all user zsh configuration in one place.

On macOS you could set the ZDOTDIR to ~/Documents/zsh/ and then use

iCloud syncing (or a different file sync service) to have the same files on
all your Macs. (I prefer to use git.)

bash will either use .bash_profile for login shells, or .bashrc for interac-

tive shells. That means, when you want to centralize configuration for
all use cases, you need to source your .bashrc from .bash_profile or vice

versa.

zsh behaves differently. zsh will run all of these files in the appropriate

context (login shell, interactive shell) when they exist.

zsh will start with /etc/zshenv, then the user’s .zshenv. The zshenv files

are always used when they exist, even for scripts with the #!/bin/zsh

shebang. Since changes applied in the zshenv will affect zsh behavior in

all contexts, you should you should be very cautious about changes ap-
plied here.

Next, when the shell is a login shell, zsh will run /etc/zprofile and

.zprofile. Then for interactive shells (and login shells) /etc/zshrc and

.zshrc. Then, again, for login shells /etc/zlogin and .zlogin. Why are

there two files for login shells? The zprofile exists as an analog for

bash’s and sh’s profile files, and zlogin as an analog for ksh login files.

Finally, there are zlogout files that can be used for cleanup, when a lo-

gin shell exits. In this case, the user level .zlogout is read first, then the

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 4/6

central /etc/zlogout. If the shell is terminated by an external process,

these files might not be run.

Apple Provided Configuration Files

macOS Mojave (and earlier versions) includes /etc/zprofile and

/etc/zshrc files. Both are very basic.

/etc/zprofile uses /usr/libexec/path_helper to set the default PATH.

Then /etc/zshrc enables UTF–8 with setopt combiningchars.

Like /etc/bashrc there is a line in /etc/zshrc that would load

/etc/zshrc_Apple_Terminal if it existed. This is interesting as

/etc/bashrc_Apple_Terminal contains quite a lot of code to help bash to

communicate with the Terminal application. In particular bash will

send a signal to the Terminal on every new prompt to update the path
and icon displayed in the Terminal window title bar, and provides other
code relevant for saving and restoring Terminal sessions between appli-
cation restarts.

However, there is no /etc/zshrc_Apple_Terminal and we will have to

provide some of this functionality ourselves.

Note: As of this writing, /etc/zshrc in the macOS Catalina

beta is different from the Mojave /etc/zshrc and provides

more configuration. However, since Catalina is still beta, I

will focus these articles on Mojave and earlier. Once

Catalina is released, I may update these articles or write a

new one for Catalina, if necessary.

Which File to use?

When you want to use the ZDOTDIR variable to change the location of the

other zsh configuration files, setting that variable in ~/.zshenv seems

like a good choice. Other than that, you probably want to avoid using
the zshenv files, since it will change settings for all invocations of zsh, in-

cluding scripts.

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 5/6

macOS Terminal considers every new shell to be a login shell and an in-
teractive shell. So, in Terminal a new zsh will potentially run all config-

uration files.

For simplicity’s sake, you should use just one file. The common choice is
.zshrc.

Most tools you can download to configure zsh, such as ‘prezto’ or ‘oh-

my-zsh’, will override or re-configure your .zshrc. You could consider

moving your code to .zlogin instead. Since .zlogin is sourced after

.zshrc it can override settings from .zshrc. However, .zlogin is only

called for login shells.

The most common situation where you do not get a login shell with
macOS Terminal, is when you switch to zsh from another shell by typing

the zsh command.

I would recommend to put your configuration in your .zshrc file and if

you want to use any of the theme projects, read and follow their in-
structions closely as to how you can preserve your configurations to-
gether with theirs.

Managing the shell for Administrators

MacAdmins may have the need to manage certain shell settings for
their users, usually environment variables to configure certain com-
mand line tool’s behaviors.

The most common need is to expand the PATH environment variable for

third party tools. Often the third party tools in question will have elabo-
rate postinstall scripts that attempt to modify the current user’s
.bash_profile or .bashrc. Sometimes, these tools even consider that a

user might have changed the default shell to something other than bash.

On macOS, system wide changes to the PATH should be done by adding

files to /etc/paths.d.

As an administrator you should be on the lookout for scripts and in-
stallers that attempt to modify configuration files on the user level, dis-
able the scripts during deployment, and manage the required changes
centrally. This will allow you to keep control of the settings even as tools

https://github.com/sorin-ionescu/prezto
https://oh-my-z.sh/
https://scriptingosx.com/2017/05/where-paths-come-from/

2/21/2020 Moving to zsh, part 2: Configuration Files – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/ 6/6

change, are added or removed from the system, while preserving the
user’s custom configurations.

To manage environment variables other than PATH centrally, administra-

tors should consider /etc/zshenv or adding to the existing /etc/zshrc. In

these cases you should always monitor whether updates to macOS over-
write or change these files with new, modified files of their own.

Summary

There are many possible files where the zsh can load user configura-

tion. You should use ~/.zshrc for your personal configurations.

There are many tools and projects out there that will configure zsh for

you. This is fine, but might keep you from really understanding how
things work.

MacAdmins who need to manage these settings centrally, should use
/etc/paths.d and similar technologies or consider /etc/zshenv or

/etc/zshrc.

Apple’s built-in support for zsh in Terminal is not as detailed as it is for

bash.

Next: Part 3 – Shell Options

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 1/9

Moving to zsh, part 3: Shell Options

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options (this article)
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

Now that we have chosen a file to configure our zsh, we need to decide

on ‘what’ to configure and ‘how.’ In this post, I want to talk about zsh’s

shell options.

As I have mentioned in the earlier posts, I am aware that there are
many solutions out there that give you a pre-configured ‘shortcut’ into
lots of zsh goodness. But I am interested in learning this the ‘hard way’

without shortcuts. Call me old-fashioned. (“Uphill! In the snow! Both
ways!”)

In the previous post, I listed some features that I would like to transfer
from my bash configuration. While researching how to implement these

options in zsh, I found a few, new and interesting options in zsh.

The settings from bash which I want in zsh were:

case-insensitive globbing
command history, shared across windows and sessions

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 2/9

Note: bash in this series of posts specifically refers to the

version of bash that comes with macOS as /bin/bash

(v3.2.57).

Note 2: Mono-typed lines starting with a % show commands

and results from zsh. Mono-typed lines starting with $

show commands and results in bash

What are Shell Options?

Shell options are preferences for the shell’s behavior. You are using
shell options in bash, when you enable ‘trace mode’ for scripts with the

set -x command or the bash -x option. (Note: this also works with zsh

scripts.)

zsh has a lot of shell options. Many of these options serve the purpose of

enabling (or disabling) compatibility with other shells. There are also
many options which are specific to zsh.

You can set an option with the setopt command. For compatibility with

other shells the setopt command and set -o have the same effect (set

an option by name). The following commands set the same option:

set -o AUTO_CD
setopt AUTO_CD

The names or labels of the options are commonly written in all capitals
in the documentation but in lowercase when listed with the setopt tool.

The labels of the options are case insensitive and any underscores in
the label are ignored. So, these commands set the same option:

setopt AUTO_CD
setopt autocd
setopt auto_cd
setopt autoCD

There are quite a few ways to negate or unset an option. First you can
use unsetopt or set +o. Alternatively, you can prefix with NO or no to

http://zsh.sourceforge.net/Doc/Release/Options.html#Options

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 3/9

negate an option. The following commands all have the same effect of
turning off the previously set option AUTO_CD

unsetopt AUTO_CD
set +o AUTO_CD
unsetopt autocd
setopt NO_AUTO_CD
setopt noautocd

Any options you change will only take effect in the current instance of
zsh. When you want to change the settings for all new shells, you have

to put the commands in one of the configuration files (usually .zshrc).

Showing the current Options

You can list the existing shell options with the setopt command:

% setopt
combiningchars
interactive
login
monitor
shinstdin
zle

This list only shows options are changed from the default set of options
for zsh. These options are marked with <D> (default for all shell emula-

tions) or <Z> (default for zsh) in the documentation or the zshoptions

man page.

You can also get a list of all default zsh options with the command:

% emulate -lLR zsh

Some zsh Options I use

As I have mentioned before in my posts on bash configuration, I prefer

minimal configuration changes, so I do not feel all awkward and lost
when I have to work on an ‘un-configured’ Mac.

https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
http://zsh.sourceforge.net/Doc/Release/Options.html#Options
https://scriptingosx.com/2017/07/minimal-terminal-prompt/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 4/9

These configurations are a personal choice and you should pick and
choose your own. You can find a full list of zsh options in the zsh Manu-

al or with man zshoptions.

On the other hand, exploring the options allows us to explore a few use-
ful zsh features.

Case Insensitive Globbing

Note: ‘Globbing’ is a unix/shell term that refers to the expansion of wild-
card characters, such as * and ? into full file paths and names. I.e. ~/D*

is expanded into /Users/armin/Desktop /Users/armin/Documents

/Users/armin/Downloads

Since the file system on macOS is (usually) case-insensitive, I prefer
globbing and tab-completion to be case-insensitive as well.

The zsh option which controls this is CASE_GLOB. Since we want globbing

to be case-insensitive, we want to turn the option off, so:

setopt NO_CASE_GLOB

You can test this in the shell:

% ls ~/d*<tab>

In zsh tab completion will replace the wildcard with the actual result. So

after the tab you will see:

% ls /Users/armin/Desktop /Users/armin/Documents
/Users/armin/Downloads

Using tab completion this way to see and possibly edit the actual re-
placement for wildcards is a useful safety net.

In bash hit the tab key will list possible completions, but not substitute

them in the command prompt.

If you do not like this behavior in zsh then you can change to behavior

similar to bash with:

http://zsh.sourceforge.net/Doc/Release/Options.html#Options

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 5/9

setopt GLOB_COMPLETE

Automatic CD

Sometimes you enter the path to a directory, but forget the leading cd:

$ Library/Preferences/
bash: Library/Preferences/: is a directory

% Library/Preferences
zsh: permission denied: Library/Preferences

With AUTO_CD enabled in zsh, the shell will automatically change

directory:

% Library/Preferences
% pwd
/Users/armin/Library/Preferences

This works with relative and absolute paths, including the ..:

% ..
% pwd
/Users/armin/Library
% ../Desktop
% pwd
/Users/armin/Desktop

I have an alias in my .bash_profile that sets the .. command to cd ...

Auto CD replaces that functionality and more.

Enable Auto CD with:

setopt AUTO_CD

Shell History

Shells commonly remember previously executed commands and allows
you to recall them with the up and down arrow keys, search or special
history commands.

https://scriptingosx.com/2017/05/configuring-bash-with-aliases-and-functions/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 6/9

Most of those keys work the same in zsh. However, there are a few

things you need to configure for zsh history to work as you are used to

with bash on macOS.

By default, zsh does not save its history when the shell exits. The history

is ‘forgotten’ when you close a Terminal window or tab. To make zsh

save its history to a file when it exits, you need to set a variable in the
shell:

HISTFILE=${ZDOTDIR:-$HOME}/.zsh_history

Note: this is not a shell option but shell variable or parameter. I will
cover some more of those later, You can find a list of variables used by
zsh in the documentation.

The HISTFILE variable tells zsh where to store the history data. The syn-

tax ${ZDOTDIR:-$HOME} means it will use the value of ZDOTDIR when it is

set or default to the value of HOME otherwise. When a user has set the

ZDOTDIR variable to group their configurations files in a specific directo-

ry, the history will be stored there as well.

By default zsh simply writes each command in its own line in the histo-

ry file. You can view the file’s contents with any text editor or list the
last few commands:

% tail -n 10 ~/.zsh_history

You can make zsh add a bit more data (timestamp in unix epoch time

and elapsed time of the command) by setting the EXTENDED_HISTORY shell

option.

setopt EXTENDED_HISTORY

You can set limits on how many commands the shell should remember
in the session and in the history file with the HISTSIZE and SAVEHIST

variables:

SAVEHIST=5000
HISTSIZE=2000

http://zsh.sourceforge.net/Doc/Release/Parameters.html#Parameters-Used-By-The-Shell
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 7/9

When the shell reaches this limit the oldest commands will be removed
from memory or the history file.

By default, when you exit zsh (for example, by closing the window or

tab) this particular instance of zsh will overwrite an existing history file

with its history. So when you have multiple Terminal windows or tabs
open, they will all overwrite each others’ histories eventually.

You can tell zsh to use a single, shared history file across the sessions

and append to it rather than overwrite:

share history across multiple zsh sessions
setopt SHARE_HISTORY
append to history
setopt APPEND_HISTORY

Furthermore, you can tell zsh to update the history file after every com-

mand, rather than waiting for the shell to exit:

adds commands as they are typed, not at shell exit
setopt INC_APPEND_HISTORY

When you use a shared history file, it will grow very quickly, and you
may want to use some options to clean out duplicates and blanks:

expire duplicates first
setopt HIST_EXPIRE_DUPS_FIRST
do not store duplications
setopt HIST_IGNORE_DUPS
#ignore duplicates when searching
setopt HIST_FIND_NO_DUPS
removes blank lines from history
setopt HIST_REDUCE_BLANKS

(some of these are redundant)

Most of the time you will access the history with the up arrow key to re-
call the last command, or maybe a few more steps. You can search
through the history with ctrl-R

In zsh, you can also use the !! history substitution, which will be re-

placed with the entire last command. This is most commonly used in
combination with sudo:

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 8/9

% systemsetup -getRemoteLogin
You need administrator access to run this tool... exiting!
% sudo !!
sudo systemsetup -getRemoteLogin
Password:
Remote Login: On

By default, the shell will show the command it is substituting before it is
run. But at that point, it is too late to make any changes. When you set
the HIST_VERIFY option, zsh will show the substituted command in the

prompt instead, giving you a chance to edit or cancel it, or just confirm
it.

% systemsetup -getRemoteLogin
You need administrator access to run this tool... exiting!
% sudo !!
% sudo systemsetup -getRemoteLogin
Password:
Remote Login: On

This works for other history substitutions such as !$ or !*, as well. You

can find all of zsh’s history expansions in the documentation.

Correction

When you mistype a command or path, the shell is usually unforgiving.
In zsh you can enable correction. Then, the shell will make a guess of

what you meant to type and ask whether you want do that instead:

% systemprofiler
zsh: correct 'systemprofiler' to 'system_profiler' [nyae]?

Your options are to

n: execute as typed

y: accept and execute the suggested correction

a: abort and do nothing

e: return to the prompt to continue editing

I have found this far less annoying and far more useful than I expected.
Especially, since it works together with AUTO_CD:

http://zsh.sourceforge.net/Doc/Release/Expansion.html#History-Expansion

2/21/2020 Moving to zsh, part 3: Shell Options – Scripting OS X

https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/ 9/9

% Dekstop
zsh: correct 'Dekstop' to 'Desktop' [nyae]?

You enable zsh correction with these options:

setopt CORRECT
setopt CORRECT_ALL

Reverting to defaults

Most of the changes mentioned here affect the interactive shell and will
have little impact on zsh scripts. However, there are some options that

do affect the behavior of things like variable substitutions which will af-
fect scripts.

You can revert the options for the current shell to the default settings
with the following command:

emulate -LR zsh

We encountered this command earlier when we listed the default set-
tings. The -l option will list the settings rather than apply them.

If in doubt, it may be useful to add this at the beginning of your zsh

scripts.

Next

In the next part we will take a look at aliases and functions.

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 1/5

Moving to zsh, part 4: Aliases and Functions

Apple has announced that in macOS 10.15 Catalina the default shell will be zsh.

In this series, I will document my experiences moving bash settings, configurations,

and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions (this article)
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded with more

detail and topics. Like my other books, I plan to update and add to it

after release as well, keeping it relevant and useful. You can order it on

the Apple Books Store now.

As I have mentioned in the earlier posts, I am aware that there are many solutions
out there that give you a pre-configured ‘shortcut’ into lots of zsh goodness. But I am

interested in learning this the ‘hard way’ without shortcuts. Call me old-fashioned.
(“Uphill! In the snow! Both ways!”)

Aliases

Aliases in zsh work just like aliases in bash. You declare an alias with the alias (built-

in) command and it will work as a text replacement at the beginning of the com-
mand prompt:

alias ll='ls -al'

You can just copy your alias declarations from your .bash_profile or .bashrc to your

.zshrc. I had aliases for .. and cd.. which are now handled by Auto CD and shell cor-

rection respectively, so I didn’t bother to move those. (part 3: ‘Shell Options’)

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX
https://scriptingosx.com/2017/05/configuring-bash-with-aliases-and-functions/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 2/5

After the alias is declared, you can use it at the beginning of a command. When you
try to use the alias anywhere else in the command, the alias will not work:

% sudo ll
sudo: ll: command not found

Global Aliases

This is where zsh has an advantage. You can declare an alias as a ‘global’ alias, and

then will be replaced anywhere in the command line:

% alias -g badge='tput bel'
% sudo badge #<beeps> with privilege

Identifying Aliases

There is one more feature of zsh that is useful with aliases. The which command will

show if a command stems from an alias substitution:

% which ll
ll: aliased to ls -l

However, when you try this with global aliases, the substitution occurs before the
which command can evaluate the alias, which leads to an unexpected result:

% which badge
/usr/bin/tput
bel not found

You can suppress the alias substitution by escaping the first character or by quoting
the entire alias name:

% which \badge
badge: globally aliased to tput bel
% which 'badge'
badge: globally aliased to tput bel

Functions

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 3/5

As with aliases, functions in your zsh configuration will work just as they did in bash.

function vnc() {
 open vnc://"$USER"@"$1"
}

This code in your zsh configuration file will define the vnc function and make it avail-

able in the shell.

Autoload Functions

However, zsh has some features which make using functions more flexible. There is

(once again) a bit of configuration required to get this working.

Instead of declaring the function directly the configuration file, you can put the func-
tion in a separate file. zsh has a built-in variable called fpath which is an array of

paths where zsh will look for files defining a function. You can add your own directo-

ry to this search path:

fpath+=~/Projects/dotfiles/zshfunctions

Just having a file in the directory is not enough. You still have to tell zsh that you

want to use this particular function:

autoload vnc

This command tells zsh: “’Declare a function named vnc. To execute it, load a file

named vnc, it is somewhere in the fpath.”

Note: you often see the -U or -Uz option added to the autoload command. These op-

tions help avoid conflicts with your personal settings. They suppress alias substitu-
tion and ksh-style loading of functions, respectively.

The vnc file in my zshfunctions directory can look like this:

uses the arguments as hostnames for `open vnc://` (Screen Sharing)
uses the $USER username as default account name

for x in $@; do
 open vnc://"$USER"@"$x"
done

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 4/5

The vnc function will open a Screen Sharing session with the current user name pre-

filled in.

Initializing Autoload Functions

You could also put the code in the function file into a function block:

function vnc() {
 for x in $@; do
 open vnc://"$vnc_user"@"$x"
 done
}

initialization code
vnc_user="remote_admin"
alias screen_sharing='vnc'

The function name should match the function name declared with autoload.

When you have additional code outside the function, the autoload behavior changes.

When the function is called for the first time, the function will be defined and the
code outside the function will be run. The function itself will not be executed on the
first run. On subsequent calls, the function will be executed and the code outside the
function is ignored.

You can use this to provide setup and initialization code for the function. You can
even have more functions defined in the function file. The above example declares
and sets a variable to use for account name and an alias for the vnc command.

Since you have to run the function once for the initialization, you often see this syn-
tax in the zsh configuration file:

autoload vnc && vnc

Which means ‘declare the function and if that succeeds run it.’

In some functions, the initialization code will already launch the function itself:

function vnc() {
 ...
}

2/21/2020 Moving to zsh, part 4: Aliases and Functions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/ 5/5

initialization
vnc_user="remote_admin"
vnc()

Since the behavior will vary from each autoloaded function to the next, be sure to

study any documentation or the function’s code.

Identifying Functions

Finally, the which command will show the function code:

 % which vnc
vnc () {
 for x in $@
 do
 open vnc://"$USER"@"$x"
 done
}

The functions command without any parameters, will print all functions (there will

be a lot of them). Use functions + to just list the function names.

Debugging Functions

When you are working on complex autoloaded functions, you will at some point
have to do some debugging. You can enable tracing for functions with

% functions -t vnc
% vnc Client.local
+vnc:1> x=Client.local
+vnc:2> open vnc://armin@Client.local

You can disable tracing for this function with functions +t vnc.

Next

In the next part we will enable, use and configure tab completions.

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 1/8

Moving to zsh, part 5: Completions

Apple has announced that in macOS 10.15 Catalina the default shell will be zsh.

In this series, I will document my experiences moving bash settings, configurations,

and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions (this article)
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea
Part 8: Scripting zsh

I am preparing a book on this topic, reworked and expanded with

more detail and topics. Like my other books, I plan to update and add

to it after release as well, keeping it relevant and useful. You can pre-

order it on the Apple Books Store now.

As I have mentioned in the earlier posts, I am aware that there are many solutions
out there that give you a pre-configured ‘shortcut’ into lots of zsh goodness. But I am

interested in learning this the ‘hard way’ without shortcuts. Call me old-fashioned.
(“Uphill! In the snow! Both ways!”)

What are Completions?

Man shells use the tab key (⇥) for completion. When you press that key, the shell
tries to guess what you are typing and will complete it, or if the beginning of what
you typed is ambiguous, suggest from a list of possible completions.

For example when you want to cd to your Documents folder, you can save typing:

% cd ~/Doc⇥
% cd ~/Documents/

When you hit the tab key, the system will complete the path to the Documents folder.

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 2/8

When the completion is ambiguous, the shell will list possible completions:

% cd ~/D⇥
Desktop/ Documents/ Downloads/

At this point, you can add a character or two to get to a unique completion, and hit
the tab key again. In zsh you can also hit the tab key repeatedly to cycle through the

suggested completions. In this example, the first tab keystroke will show the list, the
second will complete ~/Desktop/, the third completes ~/Documents, and so on.

You can use tab completion commands as well:

% system⇥
system_profiler systemkeychain systemsetup
systemsoundserverd systemstats
% system_⇥
% system_profiler

Not having to type path and file names saves time and avoids errors, especially with
complex paths with spaces and other special characters:

% cd ~/Li⇥
% cd ~/Library/Appl⇥
% cd ~/Library/Application S⇥
Application Scripts/ Application Support/
% cd ~/Library/Application Su⇥
% cd ~/Library/Application Support/

Using tab completion is a huge productivity boost when using a shell.

Turning It On

In the default configuration, tab completion in zsh is very basic. It will complete com-

mands and paths, but not much else. But you can enable a very powerful, and useful
completion system.

zsh comes with a tool you can use to setup this completion system. When you run the

compinstall command it will lead you through a complex and hard to understand list

of menus which explains the options and will generate the code necessary to set this
configuration up and add it to your .zshrc file or another configuration file of your

choice.

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 3/8

Since the commands to configure the completion are quite arcane and hard to under-
stand, this is a good way to get something to start out with. I will explain some of
these options and commands in detail.

Whether you use compinstall or not, to turn on the more powerful completion

system, you need to add at least this command to yourzsh` configuration file:

autoload -Uz compinit && compinit

This will initialize the zsh completion system. The details of this system are docu-

mented here.

If you want to configure the system, the configuration commands (usually zstyle

commands) should be added to the zsh configuration file before you enable the sys-

tem. (This only matters for a few configurations, but as a general rule it is safer.)

All of these completion rules need to be loaded and prepared. zsh’s completion sys-

tem creates a cache in the file ~/.zcompdump. The first time you run compinit it might

take a noticeable time, but subsequent runs should use this cache and be much
faster.

Sometimes, especially when building and debugging your own completion files, you
may need to delete this file to force a rebuild:

% rm -f ~/.zcompdump
% compinit

Case Insensitive Completion

Since the macOS file systems are usually case-insensitive, I prefer my tab-completion
to be case-insensitive as well. For bash you configure that in the ~/.inputrc. In zsh

you modify the completion systems behavior with this (monstrous) command:

case insensitive path-completion
zstyle ':completion:*' matcher-list 'm:{[:lower:][:upper:]}={[:upper:]
[:lower:]}' 'm:{[:lower:][:upper:]}={[:upper:][:lower:]} l:|=* r:|=*' 'm:
{[:lower:][:upper:]}={[:upper:][:lower:]} l:|=* r:|=*' 'm:{[:lower:]
[:upper:]}={[:upper:][:lower:]} l:|=* r:|=*'

http://zsh.sourceforge.net/Doc/Release/Completion-System.html#Completion-System
https://scriptingosx.com/2016/04/make-tab-completion-in-bash-case-insensitive/

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 4/8

I have seen many varieties for this configuration in different websites, but this is
what compinstall adds when I select case-insensitive completion, so I am going with

that.

Partial Completion

This is a particularly nice feature. You can type fragments of each path segment and
the completion will try to complete them all at once:

% cd /u/lo/b⇥
% cd /usr/local/bin

% cd ~/L/P/B⇥
% ~/Library/Preferences/ByHost/

If the fragments are ambiguous, there are different strategies to what the completion
system suggests. I have configured these like this:

partial completion suggestions
zstyle ':completion:*' list-suffixes
zstyle ':completion:*' expand prefix suffix

Commands with built-in completion

zsh comes with several completion definitions for many commands. For example,

when you type cp and then hit tab, the system will correctly assume you want to

complete a file path and show the suggestions from the current working directory.

However, when you type cp -⇥ the completion can tell from the - that you want to

add an option to the command and suggest a list of options for cp, with short

descriptions.

% cp -⇥
-H -- follow symlinks on the command line in recursive mode
-L -- follow all symlinks in recursive mode
-P -- do not follow symlinks in recursive mode (default)
-R -- copy directories recursively
-X -- don't copy extended attributes or resource forks
-a -- archive mode, same as -RpP
-f -- force overwriting existing file
-i -- confirm before overwriting existing file

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 5/8

-n -- don't overwrite existing file
-p -- preserve timestamps, mode, owner, flags, ACLs, and extended attributes
-v -- show file names as they are copied

As the context of command prompt you are assembling changes, you may get differ-
ent completion suggestions. For example, the completion for ssh will suggest host

names:

% ssh armin@⇥

zsh comes with completion definitions for many common commands. Nevertheless,

it can be helpful to just hit tab, especially when wondering about options.

On macOS completions are stored in /usr/share/zsh/5.3/functions (replace the5.3

with 5.7.1 in Catalina). This directory stores many functions used with zsh and is in

the default fpath. All the files in that directory that start with an underscore _ con-

tain the completion definitions command. So, the file _cp contains the definition for

the cp command. (Some of the definition files contain the definitions for multiple

commands.)

Completions for macOS Commands

There are even a few macOS specific command that come with the default zsh

installation.

% system_profiler ⇥⇥

macOS High Sierra and macOS Mojave come with zsh 5.3, which is now nearly two

years old. zsh 5.3 contains less macOS specific completion definitions than the cur-

rent zsh 5.7.1 which will is the pre-installed zsh in macOS Catalina. Some of the com-

pletions in 5.3 have also been updated in 5.7.1.

Tool zsh 5.3 zsh 5.7.1

caffeinate √

defaults √ √

fink √ √

fs_usage √

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 6/8

Tool zsh 5.3 zsh 5.7.1

hdiutil √ √

mdfind √

mdls √

mdutil √

networksetu

p

√

nvram √

open √ √

osascript √

otool √

pbcopy/pbpas
te

√

plutil √

say √

sc_usage √

scselect √

scutil √

softwareupd

ate

√ √

sw_vers √

swift √

system_prof

iler

√ √

xcode_selec

t

√

Load bash completions

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 7/8

Since the default shell on macOS has been bash for so long, there are quite a few bash

completion definitions for macOS commands and third party tools available. For ex-
ample Tony Williams’ bash completion for autopkg (post, Github).

You do not have to rewrite these completions, since the zsh completion system can

use bash completion scripts as well: (add this to your zsh configuration file)

load bashcompinit for some old bash completions
autoload bashcompinit && bashcompinit

[[-r ~/Projects/autopkg_complete/autopkg]] && source
~/Projects/autopkg_complete/autopkg

When you have multiple bash completion scripts you want to load, you only need to

load bashcompinit once.

Build your own completions

Once you start using completions, you will want to have them everywhere. While
many built-in completions exists, there are still many commands that lack a good
definition.

Some commands, like the swift command line tool, have a built-in option to generate

the completion syntax. You can then store that in a file and put it in your fpath:

% swift package completion-tool generate-zsh-script >_swift

Note: in the case of swift, its definition will conflict with the

_openstack definition in zsh 5.3. You can fix this with the command

compdef _swift swift after loading the completion system.

Some commands provide a list of options and arguments with the -h/--help option. If

this list follows a certain syntax, you can get a decent completion working with

% compdef _gnu_generic <command>

One example on macOS, where this has decent results is the xed command which

opens a file or folder in Xcode.

https://macintoshguy.wordpress.com/2017/05/15/bash-completion-for-autopkg/
https://github.com/Honestpuck/autopkg_complete

2/21/2020 Moving to zsh, part 5: Completions – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/ 8/8

But for best results, you will often have to build the description yourself. Unfortu-
nately this is not a simple task. The syntax is meticulously, but also quite abstractly
documented in the zsh documentation for the Completion System. I also found the

‘howto’ documentation in the zsh-completions repository very useful, as well as the

‘zsh Completion Style Guide.’

To avoid everyone re-inventing the wheel, I have started a repository on Github for
macOS specific completion files. The page has the instructions on how to install them
and I will welcome pull requests with contributions. Since I am just starting to learn
this as well, I am sure there are improvements that can be made on the completions I
have built so far and there are several commands where you can test your skills and
build a new one.

I suggest the #zsh channel on the MacAdmins Slack for discussion.

Next

In the next post in this series, we will discuss how to configure zsh’s command line

prompt.

http://zsh.sourceforge.net/Doc/Release/Completion-System.html
https://github.com/zsh-users/zsh-completions/blob/master/zsh-completions-howto.org
https://github.com/zsh-users/zsh/blob/master/Etc/completion-style-guide
https://github.com/scriptingosx/mac-zsh-completions
http://macadmins.org/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 1/7

Moving to zsh, part 6 – Customizing the zsh
Prompt

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt (this article)

Part 7: Miscellanea
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

As I have mentioned in the earlier posts, I am aware that there are
many solutions out there that give you a pre-configured ‘shortcut’ into
lots of zsh goodness. But I am interested in learning this the ‘hard way’

without shortcuts. Call me old-fashioned. (“Uphill! In the snow! Both
ways!”)

The default bash prompt on macOS is quite elaborate. It shows the user-

name, the hostname, and the current directory.

Calypso:~ armin$

On the other hand, the default bash prompt doesn’t show the previous
command’s exit code, a piece of information I find very useful. I have
written before how I re-configured my bash prompt to have the infor-

mation I want:

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 2/7

Minimal Terminal Prompt
Show Exit Code in your bash Prompt

Of course, I wanted to recreate the same experience in zsh.

The only (visual) difference to my bash prompt is the % instead of the $.

Note: creating a file ~/.hushlogin will suppress the status

message at the start of each Terminal session in zsh as well

as in bash (or any other shell).

Basic Prompt Configuration

The basic zsh prompt configuration works similar to bash, even though

it uses a different syntax. The different placeholders are described in
detail in the zsh manual.

zsh uses the same shell variable PS1 to store the default prompt. Howev-

er, the variable names PROMPT and prompt are synonyms for PS1 and you

will see either of those three being used in various examples. I am going
to use PROMPT.

The default prompt in zsh is %m%#. The %m shows the first element of the

hostname, the %# shows a # when the current prompt has super-user

https://scriptingosx.com/2017/07/minimal-terminal-prompt/
https://scriptingosx.com/2019/05/show-exit-code-in-your-bash-prompt/
http://zsh.sourceforge.net/Doc/Release/Prompt-Expansion.html#Prompt-Expansion

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 3/7

privileges (e.g. after a sudo -s) and otherwise the % symbol (the default

zsh prompt symbol).

The zsh default prompt is far shorter than the bash default, but even less

useful. Since I work on the local system most of the time, the hostname
bears no useful information, and repeating it every line is superfluous.

Note: you can argue that the hostname in the prompt is

useful when you frequently have multiple terminal

windows open to different hosts. This is true, but then the

prompt is defined by the remote shell and its configuration

files on the remote host. In your configuration file, you can

test if the SSH_CLIENT variable is set and show a different

prompt for remote sessions. There are more ways of

showing the host in remote shell sessions, for example in

the Terminal window title bar or with different window

background colors.

In our first iteration, I want to show the current working directory in-
stead of the hostname. When you look through the list of prompt place-
holders in the zsh documentation, you find %d, %/, and %~. The first two

do exactly the same. The last substitution will display a path that starts
with the user’s home directory with the ~, so it will shorten

/Users/armin/Projects/ to ~/Projects.

Note: in the end you want to set your PROMPT variable in the

.zshrc file, so it will take effect in all your zsh sessions. For

testing, however, you can just change the PROMPT variable in

the interactive shell. This will give you immediate feedback,

how your current setup works.

% PROMPT='%/ %# '
/Users/armin/Projects/dotfiles/zshfunctions %

% PROMPT='%~ %# '
~/Projects/dotfiles/zshfunctions %

Note the trailing space in the prompt string, to separate the final % or #

from the command entry.

http://zsh.sourceforge.net/Doc/Release/Prompt-Expansion.html#Prompt-Expansion

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 4/7

I prefer the shorter output of the %~ option, but it can still be quite long,

depending on your working directory. zsh has a trick for this: when you

insert a number n between the % and the ~, then only the last n elements

of the path will be shown:

% PROMPT='%2~ %# '
dotfiles/zshfunctions %

When you do %1~ it will show only the name of the working directory or

~ if it is the home directory. (This also works with %/, e.g. %2/.)

Adding Color

Adding a bit of color or shades of gray to the prompt can make it more
readable. In bash you need cryptic escape codes to switch the colors. zsh

provides an easier way. To turn the directory in the path blue, you can
use:

PROMPT='%F{blue}%1~%f %# '

The F stands for ‘Foreground color.’ zsh understands the colors black,

red, green, yellow, blue, magenta, cyan and white. %F or %f resets to the de-

fault text color. Furthermore, Terminal.app represents itself as a 256-
color terminal to the shell. You can verify this with

% echo $TERM
xterm-256color

You can access the 256 color pallet with %F{0} through %F{255}. There

are tables showing which number maps to which color:

256 Colors – Cheat Sheet – Xterm, HEX, RGB, HSL
256 Terminal colors and their 24bit equivalent (or similar)

So, since I want a dark gray for my current working dir in my prompt, I
chose 240, I also set it to bold with the %B code:

PROMPT='%B%F{240}%1~%f%b %# '

https://jonasjacek.github.io/colors/
https://www.calmar.ws/vim/256-xterm-24bit-rgb-color-chart.html

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 5/7

You can find a detailed list of the codes for visual effects in the docu-
mentation.

Dynamic Prompt

I wrote an entire post on how to get bash to show the color-coded exit

code of the last command. As it turns out, this is much easier in zsh.

One of the prompt codes provides a ‘ternary conditional,’ which means
it will show one of two expressions, depending on a condition. There
are several conditions you can use. Once again the details can be found
in the documentation.

There is one condition for the previous commands exit code:

%(?.<success expression>.<failure expression>)

This expression will use the <success expression> when the previous

command exited successfully (exit code zero) and <failure expression>

when the previous command failed (non-zero exit code). So it is quite
easy to build an conditional prompt:

% PROMPT='%(?.√.?%?) %1~ %# '
√ ~ % false
?1 ~ %

You can get the √ character with option-V on the US or international

macOS keyboard layout. The last part of the ternary ?%? looks confusing.

The first ? will print a literal question mark, and the second part %? will

be replaced with previous command’s exit code.

You can add colors in the ternary expression as well:

PROMPT='%(?.%F{green}√.%F{red}?%?)%f %B%F{240}%1~%f%b %# '

Another interesting conditional code is ! which returns whether the

shell is privileged (i.e. running as root) or not. This allows us to change
the default prompt symbol from % to something else, while maintaining

the warning functionality when running as root:

http://zsh.sourceforge.net/Doc/Release/Prompt-Expansion.html#Visual-effects
https://scriptingosx.com/2019/05/show-exit-code-in-your-bash-prompt/
http://zsh.sourceforge.net/Doc/Release/Prompt-Expansion.html#Conditional-Substrings-in-Prompts

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 6/7

% PROMPT='%1~ %(!.#.>) '
~ > sudo -s
~ # exit
~ >

Complete Prompt

Here is the complete prompt we assembled, with all the parts
explained:

PROMPT='%(?.%F{green}√.%F{red}?%?)%f %B%F{240}%1~%f%b %# '

%(?.√.?%?) if return code ? is 0, show √, else

show ?%?

%? exit code of previous command

%1~ current working dir, shortening
home to ~, show only last 1

element

%# # with root privileges, % otherwise

%B %b start/stop bold

%F{...} text (foreground) color, see table

%f reset to default textcolor

Right Sided Prompt

zsh also offers a right sided prompt. It uses the same placeholders as the

‘normal’ prompt. Use the RPROMPT variable to set the right side prompt:

% RPROMPT='%*'
√ zshfunctions % 11:02:55

zsh will automatically hide the right prompt when the cursor reaches it

when typing a long command. You can use all the other substitutions
from the left side prompt, including colors and other visual markers in
the right side prompt.

https://www.calmar.ws/vim/256-xterm-24bit-rgb-color-chart.html

2/21/2020 Moving to zsh, part 6 – Customizing the zsh Prompt – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/ 7/7

Git Integration

zsh includes some basic integration for version control systems. Once

again there is a voluminous, but hard to understand description of it in
the documentation.

I found a better, more specific example in the ‘Pro git’ documentation.
This example will show the current branch on the right side prompt.

I have changed the example to include the repo name and the branch,
and to change the color.

autoload -Uz vcs_info
precmd_vcs_info() { vcs_info }
precmd_functions+=(precmd_vcs_info)
setopt prompt_subst
RPROMPT=\$vcs_info_msg_0_
zstyle ':vcs_info:git:*' formats '%F{240}(%b)%r%f'
zstyle ':vcs_info:*' enable git

In this case %b and %r are placeholders for the VCS (version control sys-

tem) system for the branch and the repository name.

There are git prompt solutions other than the built-in module, which

deliver more information. There is a script in the git repository, and

many of the larger zsh theme projects, such as ‘oh-my-zsh’ and ‘prezto’

have all kinds of git status widgets or modules or themes or what ever
they call them.

Summary

You can spend (or waste) a lot of time on fine-tuning your prompt.
Whether these modifications really improve your productivity is a mat-
ter of opinion.

In the next post, we will cover some miscellaneous odds and ends that
haven’t yet really fit into any of preceding posts.

http://zsh.sourceforge.net/Doc/Release/User-Contributions.html#Version-Control-Information
https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-Zsh
https://github.com/git/git/blob/master/contrib/completion/git-prompt.sh
https://ohmyz.sh/
https://github.com/sorin-ionescu/prezto
https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 1/6

Moving to zsh – part 7: Miscellanea

Apple has announced that in macOS 10.15 Catalina the default shell will
be zsh.

In this series, I will document my experiences moving bash settings, con-

figurations, and scripts over to zsh.

Part 1: Moving to zsh
Part 2: Configuration Files
Part 3: Shell Options
Part 4: Aliases and Functions
Part 5: Completions
Part 6: Customizing the zsh Prompt

Part 7: Miscellanea (this article)
Part 8: Scripting zsh

This series has grown into a book: reworked and expanded

with more detail and topics. Like my other books, I plan to

update and add to it after release as well, keeping it

relevant and useful. You can order it on the Apple Books

Store now.

As I have mentioned in the earlier posts, I am aware that there are
many solutions out there that give you a pre-configured ‘shortcut’ into
lots of zsh goodness. But I am interested in learning this the ‘hard way’

without shortcuts. Call me old-fashioned. (“Uphill! In the snow! Both
ways!”)

We have covered the general aspects of configuring your zsh environ-

ment and enabling some of its features to make your work more pro-
ductive. However, there are zsh features that didn’t quite fit in earlier

posts, but also don’t warrant a post of their own. So I am gathering
them here.

multiIO

https://www.apple.com/newsroom/2019/06/apple-previews-macos-catalina/
https://support.apple.com/en-us/HT208050
https://scriptingosx.com/2019/06/moving-to-zsh/
https://scriptingosx.com/2019/06/moving-to-zsh-part-2-configuration-files/
https://scriptingosx.com/2019/06/moving-to-zsh-part-3-shell-options/
https://scriptingosx.com/2019/07/moving-to-zsh-part-4-aliases-and-functions/
https://scriptingosx.com/2019/07/moving-to-zsh-part-5-completions/
https://scriptingosx.com/2019/07/moving-to-zsh-06-customizing-the-zsh-prompt/
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2019/11/new-book-release-day-moving-to-zsh/
https://scriptingosx.com/2019/10/packaging-book-update-v1-10/
https://books.apple.com/us/book/moving-to-zsh/id1483591353?mt=11&app=itunes&at=1001lpyX

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 2/6

Terminal commands can take input from a file or a previous command
(stdin) and have two different outputs: stdout and stderr. In bash you

can redirect each of these to a single other destination.

For example, you can redirect the output of a command to a file:

% system_profiler SPHardwareDataType >hardwareinfo.txt

In zsh you can redirect to (and from) multiple sources. In the simplest

form you can write the output to two files:

% system_profiler SPHardwareDataType >hardwareinfo.txt
>computerinfo.txt

This is of course not a very realistic case. Since the pipe | is a form of re-

direction, you can combine output to a file with a pipe:

% system_profiler SPHardwareDataType >hardwareprofile.txt | cat

Instead of piping to cat, you can also redirect to stdout (or &1) as well as

to a file:

% system_profiler SPHardwareDataType >&1 >hardwareprofile.txt

Note that the order of doing this is important. The construct >file.txt

>&1 would redirect the output to file.txt and then redirect the output

again to where stdout or 1 is going, so it would be redundant.

When combined with pipes and other commands multiIO can become
very useful:

% system_profiler SPHardwareDataType >hardwareprofile.txt | awk
'/Serial Number/ { print $4 }' >&1 >serialnumber.txt

You can use multiIO for input as well:

% sort </usr/share/calendar/calendar.freebsd
</usr/share/calendar/calendar.computer

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 3/6

And while this not directly related, but somewhat close, in zsh, this

% <hardwareinfo.txt

is equivalent to more hardwareinfo.txt.

Recursive Globbing with **

You can use the ** to denote an arbitrary string that can span multiple

directories in a path.

For example:

% echo Library/Preferences/**/com.apple.screensaver.*plist
Library/Preferences/ByHost/com.apple.screensaver.BBCCDDEE-AABB-
CCDD-ABCD-00AABBCCDDEE.plist
Library/Preferences/com.apple.screensaver.plist

In this case the ** matches nothing as well as /ByHost/.

Note: when used on large folder structures this glob can take a while. So
use with care.

Connected array Variables

We already encountered the fpath variable in earlier posts. You can see

its contents with the echo command:

% echo $fpath
/Users/armin/Projects/mac-zsh-completions/completions/
/Users/armin/Projects/dotfiles/zshfunctions
/usr/local/share/zsh/site-functions /usr/share/zsh/site-functions
/usr/share/zsh/5.3/functions

Interestingly enough, zsh also has an FPATH variable, which is a colon-

separated list of directories:

% echo $FPATH
/Users/armin/Projects/mac-zsh-
completions/completions/:/Users/armin/Projects/dotfiles/zshfuncti

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 4/6

ons:/usr/local/share/zsh/site-functions:/usr/share/zsh/site-
functions:/usr/share/zsh/5.3/functions

Since the fpath variable is an array, I only changed the fpath variable in

my zshrc.I never set or changed the FPATH, yet it reflects the changes

made to the fpath variable.

When you see the type of both variables, you get an idea that something
is going on:

% echo ${(t)fpath}
array-special
% echo ${(t)FPATH}
scalar-special

The fpath and FPATH are connected in zsh. Changes to one affect the oth-

er. This allows use of more flexible and powerful array operations
through the fpath ‘aspect’ of the value, but also provides compatibility

to tools that expect the traditional colon-separated format in FPATH.

You will not be surprised to hear that zsh uses the same ‘magic’ with the

PATH variable and its array counterpart path.

This means that you can continue to use path_helper to get your PATH

from the files in /etc/paths and /etc/paths.d. (Well, you don’t have to,

because on macOS this is done for all users in /etc/zprofile.) But then

you can manipulate the path variable with array functions, like:

path+=~/bin

You get the useful aspects of both syntaxes.

Suffix Aliases

I learnt this one after writing the aliases part.

Suffix aliases take effect on the last part of a path, so usually the file ex-
tension. A suffix alias will assign a command to use when you just type
a file path in the command line.

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 5/6

For example, you can a suffix alias for the txt file extension:

alias -s txt="open -t"

When you then type a path ending with .txt and no command, zsh will

execute open -t /path/to/file.txt.

The open -t command opens a file in the default application set for the

txt file extension in Finder. You probably want to set the suffix alias to

bbedit or atom or something like that rather than open -t.

You can use other command line tools for the suffix alias:

alias -s log="tail -f"

Then, typing /var/log/install.log will show the last lines of that file

and update the output when the file changes. If you prefer the graphical
user interface, you can use the open -a command to assign suffix aliases

to applications:

alias -s log="open -a Console"

You can even create a suffix alias using a different alias:

alias pacifist="open -a Pacifist"
alias -s pkg=pacifist

Together with the AutoCD option, this can improve your application-
shell interactions a lot.

Bindkey for History Search

Most of the keyboard shortcuts in zsh work the same way as they do in

bash. I have found one change that has proven quite useful:

^[[A' up-line-or-search # up arrow bindkey

^[[B' down-line-or-search # down arrow

2/21/2020 Moving to zsh – part 7: Miscellanea – Scripting OS X

https://scriptingosx.com/2019/07/moving-to-zsh-part-7-miscellanea/ 6/6

These two commands will change the behavior of the up and down ar-
row keys from just switching to the previous command, to searching.

This means that when you start typing a command and then hit the up
key, rather than just replacing what you already typed with the previ-
ous command, the shell will instead search for the latest command in
the history starting with what you already typed.

There are many commands or ‘widgets’ you can assign to keystrokes
with the bindkey command. You can find a list of default ‘widgets’ in the

documentation.

Conclusion

This concludes the part of the series about configuring zsh. When I set

out I wanted to recreate the environment I had built in bash. Along the

way I found a few features in zsh that seemed worth adding to my

toolkit.

After nearly two months of working in zsh, there are already some fea-

tures I would miss terribly when switching back to bash or a plain, un-

configured zsh. Most important is the powerful tab-completion. But fea-

tures like AutoCD, MultiIO, and flexible aliases, are useful tools as well.

The dynamic loading of functions from files in the fpath was initially

confusing, but it allows configurations and functions to be split out into
their own, which simplifies “modularizing” and sharing.

In the next (and last) post, I will cover the changes when scripting with
zsh vs bash.

http://zsh.sourceforge.net/Doc/Release/Zsh-Line-Editor.html#Standard-Widgets
https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/

