
11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 1/22

The WordPress Theme
Customizer: a Comprehensive

Developer’s Guide

November 5, 2012

This tutorial will explain in detail how to add support for the WordPress theme
customizer to your WordPress theme.

The theme customizer was introduced in WordPress version 3.4. It allows for an
editing environment where theme options can be tried by the administrator
before being applied to the live site. In this tutorial, we will look at exactly how
this feature can be added to a theme. The WordPress theme we will use for this
example will be the Responsive theme version 1.8.0.1, by Emil Uzelac. This is one
of the featured themes on WordPress.org at the moment and should give us a
solid starting point. However, please feel free to use whatever theme you’d like
as you follow along.

Please note: There are a few di�erent ways to implement the theme customizer
and save the customization settings. This tutorial will focus on the theme_mod
method. If you don’t know what that means, that’s okay. You don’t need to have
any understanding the di�erent methods to follow along with this tutorial.

1. Add the Theme Customizer page to
the admin menu
Note: Step one is no longer necessary with new versions of WordPress. The
customizer is automatically added to the menu even if the theme doesn’t use it.
Feel free to skip to step two.

First we’ll open up the theme’s functions.php �le and add the following code. It
doesn’t really matter where in the functions.php �le we place the code as long as
it isn’t inside another function.

1
2
3
4
5

/**
 * Adds the Customize page to the WordPress admin area
 */
function example_customizer_menu() {
 add_theme_page('Customize', 'Customize', 'edit_theme_opti

http://wordpress.org/extend/themes/responsive

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 2/22

Here we create a new function title “example_customizer_menu” and attach it to
the “admin_menu” action hook (If you don’t understand WordPress action hooks,
I would suggest reading Nathan Rice’s excellent Introduction to WordPress
Action Hooks post). This function has only one line, and it calls the
add_theme_page() function for adding pages to the WordPress admin area. This
function has four required parameters.

Function: add_theme_page($page_title, $menu_title, $capability, $menu_slug,
$function);

$page_title string
This will be the title text of the new page. However,
the customizer page doesn’t have a title, so I
suppose this doesn’t matter too much.

$menu_title string
This will be the text of the new menu item in the
“Appearance” menu.

$capability string
This makes sure the user has the proper
permissions to access the customizer (For more on
WordPress user

$menu_slug string The unique menu slug for this page.

Please note: If you are building a theme for public release, $page_title and
$menu_title should be translation friendly. For more details on
internationalization, please see the I18n for WordPress page of the codex.

Now if we go back to the WordPress admin area there will be a new page titled
“Customize” available in the “Appearance” menu. Clicking the Appearance >
Customize link will take us to the new theme customizer page we just created.
We will notice there are already four customization sections listed in the panel
on the left side of the screen. “Site Title and Tagline” as well as “Static Front Page”
are added to the customizer automatically. The “Colors” and “Background Image”
sections are added because the theme supports the custom background feature
built into the WordPress core. In the next section we will add our own settings
section.

2. Add a new section to the customizer
To create our own settings section, we will place the following piece of code in
the functions.php �le just below the code we added earlier (once again, the
placement doesn’t matter a whole lot, it’s just easier to add the code in order).

6
7

}
add_action('admin_menu', 'example_customizer_menu');

1
2
3
4
5

/**
 * Adds the individual sections, settings, and controls to t
 */
function example_customizer($wp_customize) {
 $wp_customize->add_section(

http://www.nathanrice.net/blog/an-introduction-to-wordpress-action-hooks/
http://codex.wordpress.org/Function_Reference/add_theme_page
http://codex.wordpress.org/I18n_for_WordPress_Developers

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 3/22

Please note: You will not be able to see the settings section until it contains at
least one setting.

We have attached our function to the “customize_register” action hook to ensure
that it runs at the proper time. The $wp_customize object is passed to our
function and we can use its methods to add sections, settings and controls to the
theme customizer. We’ll start by adding a section using the add_section()
method. This method accepts two parameters.

Method: add_section($id, $args);
$id string The unique ID of this section.

$args array
The array of arguments passed to the add_section()
function.

The $args array allows us to specify a number of details about the settings
section we’re creating.

Array: $args
title string Title of the settings section.

description string
Optional. Description of the settings section.
This is only displayed as a tooltip when the
mouse hovers over the section title.

priority integer
Optional. The priority determines the order in
which the sections will be displayed. Lower
numbers come �rst. Default: 10.

capability string
Optional. Show or hide section based on the
user’s permission levels.

theme_supports string
Optional. Show or hide the section based on
whether the theme supports a particular
feature.

In our example above, we have not used the optional “capability” argument or
the “theme_supports” argument. However, the optional “description” and
“priority” are used so you can get a feel for how they function. Go ahead and
change their values to see how they work. Next we will create a setting to be
placed in our newly created section.

3. Add a new setting

6
7
8
9

10
11
12
13
14

 'example_section_one',
 array(
 'title' => 'Example Settings',
 'description' => 'This is a settings section.',
 'priority' => 35,
)
);
}
add_action('customize_register', 'example_customizer');

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 4/22

Now we will add a new setting to the settings section we just created. This is a
two part process. First, we must register the setting. Second, we must create a
control that displays the setting. We will start by creating a text setting that will
be used to display the copyright information in the theme’s footer.

3.1 Register a setting

Settings are registered by using the add_setting() method. We will place it just
after the add_section() call and just before the closing curly brace of the
example_customizer() function.

Please note: You will not be able to see this new setting until it has it’s own
control. Don’t worry, we’ll cover controls in a moment.

Just like the add_section() method, the add_setting() method accepts two
parameters, an ID and an array of arguments.

Method: add_setting($id, $args)
$id string The unique ID of this setting.

$args array
The array of arguments passed to the add_setting()
function.

…and here are are the arguments that can be passed in the $args array.

Array: $args

default string
Optional. The default value of the setting if
no value has already been saved. Default:
blank.

type string
Optional. Determines how the setting will be
saved. Default: theme_mod.

capability string
Optional. Show or hide the setting based on
the user’s permission levels. Default:
edit_theme_options.

theme_supports string
Optional. Show or hide the section based on
whether the theme supports a particular
feature. Default: blank.

transport string
Optional. Determines how the new setting
values will be transfered to the live preview.
Default: refresh.

sanitize_callback string Optional. The name of the function that will

1
2
3
4
5
6

$wp_customize->add_setting(
 'copyright_textbox',
 array(
 'default' => 'Default copyright text',
)
);

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 5/22

be called to sanitize the input data before
saving it to the database. Default: blank.

sanitize_js_callback string

Optional. The name of the function that will
be called to sanitize the coming from the
database on its way to the theme
customizer. Default: blank.

You’ll notice in the code above we’re only using the “default” argument. Most of
the other arguments have acceptable defaults, so we won’t bother adding them
to our add_setting() method call. There are a few arguments that deserve a little
extra attention before we move on.

First, the “sanitize_callback” argument should be used to verify the data that has
been entered before storing it in the database. For the sake of simplicity, I’ve left
this step out for now but I’ll come back to it later on in the tutorial. I believe that
data sanitization is often overlooked and I want to make sure to give it the
attention that it deserves.

Second, the “sanitize_js_callback” might not be what you would expect. I typically
think of data sanitization as something that happens to user input before it is
placed in the database. However, the “sanitize_js_callback” function is called to
sanitize the data stored in the database as it is passed to the theme customizer.
The only use case I could �nd for this function was to add “#” to the beginning of
a hexadecimal value in case it was stored in the database without it.

Third, the “transport” argument is also worth mentioning. When the value of our
setting is changed in the customizer, there are two ways of updating the live
preview to re�ect the new input. The “refresh” option refreshes the frame
displaying the live preview. This happens automatically. However, if that little
delay while the page refreshes is unacceptable, you can use the “postMessage”
option. This passes the new value to the live preview using AJAX and removes the
need for a page refresh. In order to use “postMessage” you’ll need to write your
own scripts to handle the AJAX data being passed to the live preview. For the
sake of simplicity, we’ll use the default “refresh” transport option for now and
return to cover the “postMessage” transport option later on in the tutorial.

Now that that’s behind us, we can �nally add a control to our setting.

3.2 Creating a control

Controls are simply the interface used to change a setting. Each setting must
have a control in order to be visible in the theme customizer. A control is added
using the add_control() method. Just like our previous methods, it takes two
parameters. The �rst is the ID of the control. This should match the ID of the
setting that the control belongs to. Since our setting above had an ID of
“textbox”, the control must also have “textbox” as its control. Just like before, the

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 6/22

second parameter is an argument array. We will place our call to the
add_control() method just below our add_setting() function call and just before
the closing curly brace of the example_customizer() function.

Now we should �nally be able to see the section and the setting in the theme
customizer!

Just like the previous methods, the add_control() method takes two parameters,
the ID and the arguments array.

Method: add_control($id, $args)

$id string
The ID should match the ID of the setting that the control
belongs with.

$args array
The array of arguments passed to the add_control()
function.

Here are the arguments that can be placed in the $args array.

Array: $args
label string Label text for the setting.
section string The ID of the section where this setting will be placed

type string
Optional: The type of input this setting should use.
Default: text.

1
2
3
4
5
6
7
8

$wp_customize->add_control(
 'copyright_textbox',
 array(
 'label' => 'Copyright text',
 'section' => 'example_section_one',
 'type' => 'text',
)
);

https://themefoundation.com/the-wordpress-theme-customizer/wordpress-theme-customizer-example-settings-section/

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 7/22

choices array If this setting uses a select list or radio buttons, the
“choices” argument speci�es the list of options to be
displayed.

priority integer
Optional. The priority determines the order in which
the settings will be displayed within the section. Lower
numbers come �rst. Default: 10.

Most of these arguments are pretty straight forward. As you can see, we only
used the �rst three in the example above. We will deal with the “choices”
argument later on when we add select lists and radio buttons. The “priority”
argument was also left o� in the example because we have only one settings
�eld. Specifying a priority will not a�ect the settings order until there are multiple
settings. We will get to this in the next section when add other types of settings
�elds to the theme customizer.

4. Access the stored setting from the
theme
At last! We can �nally use the new setting in our theme. As mentioned earlier, we
will be using this setting to control the copyright text in the footer. The current
copyright notice is displayed by this line in the footer.php �le of the theme:

We want to remove that line and replace it with the following line:

The get_theme_mod() function accepts two parameters.

Function: get_theme_mod($name, $default)

$name string
The name of the setting to retrieve. The name of the
setting is whatever string you speci�ed as the setting ID
when you created the setting.

$default string
Optional. The default string of text to be displayed if no
setting has been saved.

You’ll notice that the �rst parameter in the code above is the same as the ID of
the setting we created earlier. This is how WordPress knows which value to grab
out of the database. The second parameter is just the fallback text to display just
in case the “copyright_textbox” setting hasn’t been saved yet.

5. Additional control types

1 <?php bloginfo('name'); ?>

1 <?php echo get_theme_mod('copyright_textbox', 'No copyright i

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 8/22

We’ve already created a textbox setting and added it to our theme, but that’s just
the beginning. There are a number of other standard control types provided by
WordPress.

5.1 Checkbox

We will use this setting to allow the copyright information to be hidden entirely.
First, we will create another setting by adding the following code just below the
text control we added earlier.

Notice that unlike the text setting we created earlier, we don’t need an
arguments array because we don’t need a default setting value. Next we’ll add
the code for the checkbox control below the setting we just added.

The only di�erence between this control and the text control is we’ve added the
“type” property to the arguments array. This lets WordPress know that we want a
checkbox to be displayed rather than the default text input �eld. Now lets use
this in the theme to hide the copyright text if the checkbox is checked. Here is
the default copyright code from the footer.php �le of the theme:

We want to check the hide_copyright setting and only display the copyright if the
checkbox is blank. The theme customizer stores the value of the checkbox as the
numeral 1 if it is checked and blank if it isn’t checked. So we’ll add an if statement
to make sure the hide_copyright checkbox is blank before displaying the
copyright text. The original code above will be replaced by the following section:

1
2
3

$wp_customize->add_setting(
 'hide_copyright'
);

1
2
3
4
5
6
7
8

$wp_customize->add_control(
 'hide_copyright',
 array(
 'type' => 'checkbox',
 'label' => 'Hide copyright text',
 'section' => 'example_section_one',
)
);

1
2
3

<?php esc_attr_e('©', 'responsive'); ?> <?php _e(date('Y'));
 <?php echo get_theme_mod('copyright_textbox', 'No copyrig

1
2
3
4
5

<?php if(get_theme_mod('hide_copyright') == '') { ?>
 <?php esc_attr_e('©', 'responsive'); ?> <?php _e(date('Y')
 <?php echo get_theme_mod('copyright_textbox', 'No cop

<?php } // end if ?>

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 9/22

5.2 Radio buttons

To demonstrate the use of radio buttons, we will create a new customizer option
to specify the placement of the logo, either left, right, or center. First let’s create
the setting and control by adding the following block of code just below the
“hide_copyright” control.

You’ll notice that just like the text input, we’ve provided a default value in the
add_setting() properties just in case none has been speci�ed yet. The real change
in radio buttons over the previously described input types is the addition of the
“choices” array this array allows us to specify which options should be available.
The �rst part of each associative array element is the name of the radio button
element. This is also the name we will use when retrieving the values from the
database. The second part of each array element is the label that will be
attached to the radio button.

To make use of this new feature in the theme, we will want to add the following
code just above the “wp_head” action hook in the header.php �le of the theme.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

$wp_customize->add_setting(
 'logo_placement',
 array(
 'default' => 'left',
)
);

$wp_customize->add_control(
 'logo_placement',
 array(
 'type' => 'radio',
 'label' => 'Logo placement',
 'section' => 'example_section_one',
 'choices' => array(
 'left' => 'Left',
 'right' => 'Right',
 'center' => 'Center',
),
)
);

1
2
3
4
5
6
7
8
9

10
11

<?php
 $example_position = get_theme_mod('logo_placement');
 if($example_position != '') {
 switch ($example_position) {
 case 'left':
 // Do nothing. The theme already aligns the l
 break;
 case 'right':
 echo '<style type="text/css">';
 echo '#header #logo{ float: right; }';
 echo '</style>';

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 10/22

This should be pretty straightforward. The code above �rst gets the logo
placement value from the database and assigns it to a variable. Then if the logo
position is not blank it runs through the possible choices and writes out the
styles to move the logo around. Note that if the logo position is “left”, no CSS is
created because the theme already displays the logo to the left.

5.3 Select lists

Creating a select list is almost exactly the same as creating radio buttons. To
demonstrate, we’ll add a select list that will let us replace the default “powered
by” footer message with something a little more fun. We’ll add the following code
right below the radio button setting and control.

That was easy! Now we have a new select list in the theme customizer and are
ready to use it in the theme. We’ll start by removing the old “powered by”
message from the footer.php �le by deleting these lines:

12
13
14
15
16
17
18
19
20
21

 break;
 case 'center':
 echo '<style type="text/css">';
 echo '#header{ text-align: center; }';
 echo '#header #logo{ float: none; margin-left
 echo '</style>';
 break;
 }
 }
?>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

$wp_customize->add_setting(
 'powered_by',
 array(
 'default' => 'wordpress',
)
);

$wp_customize->add_control(
 'powered_by',
 array(
 'type' => 'select',
 'label' => 'This site is powered by:',
 'section' => 'example_section_one',
 'choices' => array(
 'wordpress' => 'WordPress',
 'hamsters' => 'Hamsters',
 'jet-fuel' => 'Jet Fuel',
 'nuclear-energy' => 'Nuclear Energy',
),
)
);

1
2

<a href="<?php echo esc_url(__('http://themeid.com/responsive
 <?php printf('Responsive Theme'); ?>

http://themeid.com/responsive-theme/

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 11/22

In it’s place we’ll add this single line of code:

If no “powered by” setting has been saved, the footer will read “This site is
powered by WordPress.” However, if the setting has been saved, “WordPress” will
be replaced by the fun term of choice from the select list.

6. Data Sanitization
I mentioned earlier in this tutorial that for the sake of simplicity, I wouldn’t try to
throw in data sanitization right at the beginning. However, I don’t want to give
the impression that I put it o� because it’s not important. I’m giving it an entire
section of this tutorial, right? So yes, I do think it is very important. However, I’m
not going to go into all the reasons why it is so important or the consequences of
failing to sanitize data. I’ll just leave it at this: never trust user input!

6.01 Sanitize a text input

Okay, now we can get to the code. Data sanitization functions are added by using
the “sanitize_callback” argument when creating a new setting. Remember the
original textbox we added at the beginning of the tutorial for modifying the
copyright notice in the footer? This is what it looked like:

Now we simply need to add the “sanitize_callback” argument to the arguments
array like this:

Whenever the “copyright_textbox” value is saved, it �rst calls the
“example_sanitise_text” function and passes it the value to be saved. What we
want to do is check to make sure that the value is valid before saving it

3
4

<?php esc_attr_e('powered by', 'responsive'); ?> <a href="<?ph
 <?php printf('WordPress'); ?>

1 This site is powered by <?php echo get_theme_mod('powered_by

1
2
3
4
5

$wp_customize->add_setting(
 'copyright_textbox',
 array(
 'default' => 'Default copyright text',
)

1
2
3
4
5
6

$wp_customize->add_setting(
 'copyright_textbox',
 array(
 'default' => 'Default copyright text',
 'sanitize_callback' => 'example_sanitize_text',
)

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 12/22

permanently. In this case, we want to save a simple string. Lets say we don’t
mind if they use a little HTML in their copyright notice, but we de�nitely don’t
want to allow script tags to be added. We also want to make sure that if they do
add any HTML tags, they are closed properly. With that in mind, here is the
sanitization function we can use to accomplish what we just described:

The force_balance_tags() function ensures that no tags are left unclosed, while
the wp_kses_post() ensures that only safe tags make it into the database (the
same tags that are allowed in a standard WordPress post. These functions are
built into WordPress and are documented in the WordPress Codex.

6.02 Santize a checkbox

I demonstrated how to add a sanitization callback in the previous section dealing
with sanitizing text inputs, so I’m not going to repeat that here. Instead, I’ll go
straight to the sanitization function that will be used to sanitize a checkbox.

The customizer uses a value of 1 (true) for a checked checkbox and a blank value
for an unchecked box. In other words, the only two values our sanitization
function should ever save are a 1 or a blank string. Here’s what it looks like:

If the input is a 1 (indicating a checked box) then the function returns a one. If
the input is anything else at all, the function returns a blank string. This prevents
anything harmful from being saved to the database.

6.03 Sanitize radio buttons or select lists

Sanitizing multiple choice options such as radio buttons and select lists is a little
more di�cult because each time we use a multiple choice option the valid
choices are di�erent. For example, to sanitize the “Logo placement” setting we
added earlier, we would want to make sure only input matching “left”, “right”, or
“center” would be accepted. However, our “Powered by” setting should accept
“wordpress”, “hamsters”, “jet-fuel”, or “nuclear-energy” as valid instead. For this
reason, we’ll need to create separate callback functions for each of our multiple

1
2
3

function example_sanitize_text($input) {
 return wp_kses_post(force_balance_tags($input));
}

1
2
3
4
5
6
7

function example_sanitize_checkbox($input) {
 if ($input == 1) {
 return 1;
 } else {
 return '';
 }
}

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 13/22

choice �elds. I’ll mention again that I demonstrated how to add a sanitization
callback in the previous section dealing with sanitizing text inputs, so I’m not
going to repeat that here. Instead, I’ll go straight to the sanitization functions that
will be used to sanitize our multiple choice �elds.

Let’s start with the “Logo placement” radio buttons. To make things simple, we’ll
use the same array we created when adding the “Logo placement” control in
order to check if the input matches our expected input.

The �rst half of this sanitization function stores our original logo placement
options in an array. The second half of the function checks to see if the input is
valid by comparing it to the array keys using the array_key_exists() function
provided by PHP. If the input matches one of the array keys, we return the input
as is. However, if the input doesn’t match an existing array key, it is replaced with
a blank string. This ensures that only values matching our original array keys are
stored in the database.

The sanitization function for the select list works in exactly the same way. The
only di�erence is that we replace the logo placement array with the array from
our “Powered by” select list.

…and that’s how we sanitize all the standard form inputs provided by the
WordPress theme customizer.

1
2
3
4
5
6
7
8
9

10
11
12
13

function example_sanitize_logo_placement($input) {
 $valid = array(
 'left' => 'Left',
 'right' => 'Right',
 'center' => 'Center',
);

 if (array_key_exists($input, $valid)) {
 return $input;
 } else {
 return '';
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

function example_sanitize_powered_by($input) {
 $valid = array(
 'wordpress' => 'WordPress',
 'hamsters' => 'Hamsters',
 'jet-fuel' => 'Jet Fuel',
 'nuclear-energy' => 'Nuclear Energy',
);

 if (array_key_exists($input, $valid)) {
 return $input;
 } else {
 return '';
 }
}

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 14/22

7. Special control types
In addition to the general control types covered earlier, WordPress o�ers a
number of special control types. Since we’ve already covered the use of the
get_theme_mod() function to retrieve saved customizer settings from the
database, I’m not going to prolong this tutorial by trying to come up with a use
case for every single control type. I’ll simply show you how to create the controls
and let you decide how you want to use the saved values in your theme.

7.01 Drop down page list

Creating a drop down page list is quite simple. We can start with the same code
we would use to create a checkbox and simply change the setting name, the
sanitization callback, and the control type.

That was easy! Notice the “type” is set to “dropdown-pages” which will
automatically create a select list in the theme customizer allowing us to choose a
page. The value stored in the database for this setting is the page ID. Because of
this, we want to make sure that the input data is an integer before saving it to
the database. Here is the sanitization function we can use to do that.

7.02 Color picker

This is where we start to get into the more interesting theme customizer
controls. Adding the setting itself hasn’t changed, but adding the control is a bit

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

$wp_customize->add_setting(
 'page-setting',
 array(
 'sanitize_callback' => 'example_sanitize_integer',
)
);

$wp_customize->add_control(
 'page-setting',
 array(
 'type' => 'dropdown-pages',
 'label' => 'Choose a page:',
 'section' => 'example_section_one',
)
);

1
2
3
4
5

function example_sanitize_integer($input) {
 if(is_numeric($input)) {
 return intval($input);
 }
}

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 15/22

di�erent. Let’s start by adding the setting.

Looks familiar, right? The only di�erence is the sanitization callback function
we’re using. WordPress has a built-in function for sanitizing hexadecimal color
codes, which is the exact type of output our color picker will create. We also set
the default color to black (#000000).

Now lets take a look at the code used to create the color picker control.

The color picker control was built into WordPress using object oriented PHP, so
the format of the add_control() call is di�erent than the previous calls we’ve
made. Notice the “new WP_Customize_Color_Control” line. This tells WordPress
we want a new instance of the WP_Customize_Color_Control class. If you don’t
know what that means, don’t worry about it. You don’t need to understand
object oriented programming to use the theme customizer, so I’m not going to
try to explain it here.

The WP_Customize_Color_Control accepts three properties. The �rst,
$wp_customize, is always the same, so I’m not going to try to o�er an
explanation. Just make sure to use it. The second is the setting ID. This must be
the same as the ID used within the add_setting() call. The third is the arguments
array, explained in the following table:

Array: $args
label string Label/title for this setting.
section string The section to which this setting should be added.

setttings string
The setting ID used earlier in the add_control() call as
well as the add_setting() call.

1
2
3
4
5
6
7

$wp_customize->add_setting(
 'color-setting',
 array(
 'default' => '#000000',
 'sanitize_callback' => 'sanitize_hex_color',
)
);

1
2
3
4
5
6
7
8
9

10
11

$wp_customize->add_control(
 new WP_Customize_Color_Control(
 $wp_customize,
 'color-setting',
 array(
 'label' => 'Color Setting',
 'section' => 'example_section_one',
 'settings' => 'color-setting',
)
)
);

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 16/22

And there it is. WordPress does the rest of the work of creating the color picker
us.

7.03 File upload

There is another class built into WordPress that will allow us add a �le upload
setting to the theme customizer. WordPress itself limits the �le types that can be
uploaded, so I’m going to leave out the data sanitization function this time.

Just like the color picker, the �le upload control is displayed by instantiating a
new instance of a class. This time, the class in named
WP_Customize_Upload_Control. Thankfully, it accepts the same arguments as
the color so it’s pretty straight forward. All we’ll need to change is the setting ID.

7.04 Image upload

The image upload class is an extension of the �le upload class and is called in the
same way. We just change WP_Customize_Upload_Control to
WP_Customize_Image_Control and use a new setting ID.

Once again, WordPress automatically limits the types of �les that can be
uploaded, but it isn’t limited to just images. You may want to create a sanitization

1
2
3
4
5
6
7
8
9

10
11
12
13

$wp_customize->add_setting('file-upload');

$wp_customize->add_control(
 new WP_Customize_Upload_Control(
 $wp_customize,
 'file-upload',
 array(
 'label' => 'File Upload',
 'section' => 'example_section_one',
 'settings' => 'file-upload'
)
)
);

1
2
3
4
5
6
7
8
9

10
11
12
13

$wp_customize->add_setting('img-upload');

$wp_customize->add_control(
 new WP_Customize_Image_Control(
 $wp_customize,
 'img-upload',
 array(
 'label' => 'Image Upload',
 'section' => 'example_section_one',
 'settings' => 'img-upload'
)
)
);

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 17/22

function to make sure no other �le types are uploaded using the image upload
control. However, since this is a tutorial on the theme customizer, not on data
sanitization, I’m not going to go into that here.

8. Building Custom Controls
Now that we’ve covered the controls built into WordPress, how do we go about
building additional controls? Otto wrote a great post on making custom controls,
and this section will draw heavily on his tutorial.

You might have noticed earlier that the textarea input was missing from the list
of control types built into WordPress. Here we will create a custom control to
facilitate the use of textareas in the theme customizer.

To create our own control, we’ll need to extend the WP_Customize_Control class
and override the render_content() function to output our new control. If you’re
familiar with object oriented PHP, this will make sense to you, and if you’re not
familiar with it, well, just follow along. It won’t be hard.

We want to place our class inside the example_customizer() function we created
at the beginning of this tutorial. This is the function we used to setup the
customizer and add all our settings. In order for the class to work properly, it
must be de�ned somewhere inside this function:

Please note: there is another way to declare the class outside this function, but
I’m not going to cover that here.

To create our new textarea class, we’ll place the following section of code into
the function we just mentioned:

1
2
3
4
5
6
7
8
9

/**
 * Adds the individual sections, settings, and controls to the
 */
function example_customizer($wp_customize) {

 ...

}
add_action('customize_register', 'example_customizer');

1
2
3
4
5
6
7
8
9

/**
 * Adds textarea support to the theme customizer
 */
class Example_Customize_Textarea_Control extends WP_Customize
 public $type = 'textarea';

 public function render_content() {
 ?>
 <label>

http://ottopress.com/2012/making-a-custom-control-for-the-theme-customizer/

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 18/22

Notice the render_content() function displays our textarea, along with the label
for this setting. The WP_Customize_Control class that we’re extending does the
rest of the work for us.

Now we can add a setting to our customizer that makes use of the textarea class
we just created. For simplicity sake, I’m not going to add things like the display
priority, callback function, etc. that were covered earlier. The code itself is almost
exactly the same as the code we used for the upload and upload image controls.

The only changes are:

1. The setting ID has been changed to “textarea”
2. The name of the class being called has been changed to

“Example_Customize_Textarea_Control”
3. The label has been changed to “Textarea”

This should give you a good starting point to create your own classes to extend
the theme customizer.

9. Adding New Settings to Existing
Sections
Maybe you want to add a new setting to a section that already exists. For
example, because the Responsive theme supports the WordPress custom
background feature, the “Colors” settings section is automatically created and
the “Background Color” settings is placed inside. Let’s add another option to the
Colors section and call it “Font Color.” First, we need to �nd out what the section
ID is, so that we can attach our new setting to it. Sections added automatically by

10
11
12
13
14
15

 <?php e
 <textarea rows="5" style="width:100%;" <?php
 </label>
 <?php
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

$wp_customize->add_setting('textarea');

$wp_customize->add_control(
 new Example_Customize_Textarea_Control(
 $wp_customize,
 'textarea',
 array(
 'label' => 'Textarea',
 'section' => 'example_section_one',
 'settings' => 'textarea'
)
)
);

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 19/22

WordPress itself are de�ned in the wp-includes/class-wp-customize-
manager.php �le. After looking through that �le, we �nd the “colors” is the ID of
the section titled “Colors.”

Since we already created a color option earlier, we can just copy/paste the code
from our previous color option and make a few changes.

Here are the changes:

1. Change the previous setting ID of “color-setting” to “font-color” in all three
places it appears.

2. Change the default color.
3. Change the label.
4. And �nally, set the section property to “color” to make sure it is added to the

existing “Colors” section.

We’ve already covered how to use the saved settings in the theme, so I’m going
to leave it to you to apply the saved font color to the theme.

10. Using AJAX to update the live
preview
Last but not least, let’s return to the “postMessage” transport option we saw
brie�y in section three. We’ll add a new option to change the background color of
the featured content area on the home page. First, we’ll add another color picker
to the “Colors” section of the theme customizer like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

$wp_customize->add_setting(
 'font-color',
 array(
 'default' => '#444444',
 'sanitize_callback' => 'sanitize_hex_color',
)
);

$wp_customize->add_control(
 new WP_Customize_Color_Control(
 $wp_customize,
 'font-color',
 array(
 'label' => 'Font Color',
 'section' => 'colors',
 'settings' => 'font-color'
)
)
);

1
2

$wp_customize->add_setting(
 'featured-background',

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 20/22

The only di�erence between this code and the code we used to create color
pickers earlier is the label/id and the addition of the “transport” argument. Now
that we have the “transport” method set, we need to write a function to handle
the AJAX updates. This function will be hooked to the wp_footer action hook. To
accomplish this, we must place the following code inside the
example_customizer() function we created way back at the beginning:

This code checks to make sure that the theme customizer is being used. If it is,
the example_customize_preview() function is hooked to wp_footer. The �nal
argument (21) is just the priority that the function is given. It must be set to at
least 20 in order to work properly.

Finally, we want to create the example_customize_preview() function to add the
Javascript that will handle the AJAX update.

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

 array(
 'default' => '#ffffff',
 'sanitize_callback' => 'sanitize_hex_color',
 'transport' => 'postMessage',
)
);

$wp_customize->add_control(
 new WP_Customize_Color_Control(
 $wp_customize,
 'featured-background',
 array(
 'label' => 'Featured Background',
 'section' => 'colors',
 'settings' => 'featured-background'
)
)
);

1
2
3

if ($wp_customize->is_preview()) {
 add_action('wp_footer', 'example_customize_preview', 21)
}

1
2
3
4
5
6
7
8
9

10
11
12
13

function example_customize_preview() {
 ?>
 <script type="text/javascript">
 (function($) {
 wp.customize('featured-background',function(val
 value.bind(function(to) {
 $('#featured').css('background-color', to
 });
 });
 })(jQuery)
 </script>
 <?php
} // End function example_customize_preview()

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 21/22

This function simply adds a small piece of javascript to the footer of the theme
(and only when the theme customizer is being used). This function can serve as a
starting point for handling almost any type of customization data passed in via
AJAX. The code above does basically two things. First, it gets the value of the
customization �eld whenever it changes (in this case, it is the “featured-
background” value as you can see from line �ve). Second, it does something with
that value. Since we’re using a color input, we set the modi�ed value of the input
to be the background color of the #featured element (line 7) by using the css()
jQuery function.

11. Using AJAX with Preexisting Settings
But what if we want to modify the transport setting of a built in setting?
Thankfully, there’s a way to do that too. To demonstrate, we’ll be changing the
built in “Site Title” option so that it will pass its modi�ed value to the theme
customizer using “postMessage” rather than requiring a refresh. First we want to
add the following line to the main example_customizer() function created earlier:

This ensures that changes to the setting value will be passed to the live preview
via AJAX. However, in order for it to work properly, we need a Javascript function
to handle the value when it’s passed to the live preview. We can add this code to
the example_customize_preview() function we created in the previous step. It
simply updates the anchor text inside the “.site-name” element whenever the
value changes.

Please note: The Responsive theme by Emil Uzelac that has been used
throughout this tutorial doesn’t display the site name if a header image is
present. Make sure to disable the header image if you’re having trouble testing
the code on this theme.

12. More?
Did I miss anything? If you have any suggestions on improving this developer’s
guide, or even if you just found it helpful and want to let me know, please don’t
hesitate to contact me via twitter. Thanks!

Sources/Further reading (all from Otto):

1 $wp_customize->get_setting('blogname')->transport='postMessage

1
2
3
4
5

wp.customize('blogname',function(value) {
 value.bind(function(to) {
 $('.site-name a').html(to);
 });
});

https://twitter.com/alexmansfield

11/29/2019 The WordPress Theme Customizer: a Comprehensive Developer’s Guide – Theme Foundation

https://themefoundation.com/wordpress-theme-customizer/ 22/22

« A Beginning

Theme Toolkit Tutorial: The WordPress Theme Customizer »

WordPress source code.
How to leverage the Theme Customizer in your own themes
Theme Customizer Part Deux: Getting rid of Options pages
Making a custom control for the Theme Customizer

© Theme Foundation

https://themefoundation.com/a-beginning/
https://themefoundation.com/toolkit-tutorial-theme-customizer/
http://ottopress.com/2012/how-to-leverage-the-theme-customizer-in-your-own-themes/
http://ottopress.com/2012/theme-customizer-part-deux-getting-rid-of-options-pages/
http://ottopress.com/2012/making-a-custom-control-for-the-theme-customizer/
https://themefoundation.com/

