
PowerShell REST API Programming
Reaching to web servies on the web gives scripts data power

                        

 OVERVIEW

Being able to get and send data within a PowerShell script enables them to be NOT static. Communication with APIs
enable PowerShell scripts to:

Get input data

Send SMS messages and voicemails to any phone
Send emails
Send calendar appointments

There are now two major �avors of how requests and responses are formatted:

REST API, such as PowerShellforGitHub
GraphQL, such as PowerShellforGitHubGraphQL

PowerShell has two commands to make web services calls:

INDEX

Photo Credit: PowerShell Magazine

Invoke-RestMethod documentation

GET Invoke-RestMethod

POST Invoke-RestMethod

Base64 Encoding for Authentication

Authentication

Basic Authentication to GitHub

Ignore Self-Signed Certs

Invoke-WebRequest to get �le

Resources

More on DevOps

https://wilsonmar.github.io/powershell-rest-api/
https://translate.google.com/translate?sl=auto&tl=es&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://translate.google.com/translate?sl=auto&tl=fr&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://translate.google.com/translate?sl=auto&tl=de&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://translate.google.com/translate?sl=auto&tl=it&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://translate.google.com/translate?sl=auto&tl=pt&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://translate.google.com/translate?sl=auto&tl=ru&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://translate.google.com/translate?sl=auto&tl=zh-CN&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://translate.google.com/translate?sl=auto&tl=ja&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://translate.google.com/translate?sl=auto&tl=ko&u=https%3A%2F%2Fwilsonmar.github.io%2Fpowershell-rest-api%2F
https://wilsonmar.github.io/powershell-github/
https://wilsonmar.github.io/github-graphql/
https://wilsonmar.github.io/
http://www.powershellmagazine.com/


A lower-level Invoke-RestMethod.
A higher-level Invoke-WebMethod.

Invoke-RestMethod documentation

Documentation on Invoke-RestMethod says the cmdlet was introduced in PS 3.0 to send HTTP and HTTPS requests
to Representational State Transfer (REST) web services that returns richly structured data. No short alias is speci�ed
for it.

Its general syntax:

HTTP requests have both a GET and POST approach.

GET Invoke-RestMethod

Web services which do not require some registration is getting more rare nowadays.

But in this blog, Jeff Hicks found that NewEgg still has an RSS feed for their daily deals at
http://www.newegg.com/RSS/Index.aspx

1. Run a basic HTTP GET in a PowerShell script containing:

 

$uri = "http://www.newegg.com/Product/RSS.aspx?Submit=RSSDailyDeals&Depa=0" 

$response = Invoke-RestMethod -Uri $uri 

$response.title 

$response.count 

$response[0] | format-list 

BTW: Although “uri” means Universal Resource Identi�er, to be technically correct, the inclusion of the access
mechanism “http” makes it really is a URL, a type of URI.

PROTIP: When output to a variable, show a count of how many items were returned into the response variable
so that it doesn’t look like nothing happened.

The response is overwhelming, so format-list  is used to �lter out just the �rst item returned in the response

PROTIP: Lists starts from zero.

This enables us to see the names of properties: Published, title, link

Invoke-RestMethod  

[-Uri] <Uri>  

[-Headers <IDictionary> ]  

[-Body <Object> ]  

[-Certificate <X509Certificate> ] [-CertificateThumbprint <String> ]  

[-ContentType <String> ]  

[-Credential <PSCredential> ]  

[-DisableKeepAlive]  

[-InFile <String> ]  

[-MaximumRedirection <Int32> ]  

[-Method <WebRequestMethod> {Default | Get | Head | Post | Put | Delete | Trace | Options | Merge | Patch} ] [-OutF

[-PassThru]  

[-Proxy <Uri> ] [-ProxyCredential <PSCredential> ] [-ProxyUseDefaultCredentials]  

[-SessionVariable <String> ] [-TimeoutSec <Int32> ]  

[-TransferEncoding <String> {chunked | compress | deflate | gzip | identity} ] [-UseBasicParsing] [-UseDefaultCrede

[-UserAgent <String> ]  

[-WebSession <WebRequestSession> ]  

[ <CommonParameters>] 

https://technet.microsoft.com/en-us/library/hh849971.aspx
http://jdhitsolutions.com/blog/tag/invoke-restmethod/
http://www.newegg.com/RSS/Index.aspx
http://www.newegg.com/Product/RSS.aspx?Submit=RSSDailyDeals&Depa=0
https://danielmiessler.com/study/url-uri/


103 

Published : 11/3/16 4:05:46 AM 

title     : $199.99 - SHIELD Series RSCM-0916B081 - 16-Channel 960H,  

         H.264-Level DVR Surveillance Kit + Eight 900TVL Cameras - Night  

         Vision Up to 65 Feet, Remote Viewing Supported (HDD Not Included) 

link      : http://www.newegg.com/Product/Product.aspx?Item=N82E16881147042&nm_ 

         mc=OTC-RSS&cm_sp=OTC-RSS-_-Surveillance%20Security%20Systems-_-SHIE 

         LDeye-_-N82E16881147042 

2. BLAH: I get an error from this, but it’s here for future referene.

To make the response clickable, feed the response through the out-gridview  cmdlet introduced with v2 with
an alias of ogv:

 

$response | ogv -Title "Deal of the Day" -OutputMode Multiple | foreach { Start $_.link } 

[regex]$rx = "(?.)(?\d+\.\d{2})\s-\s(?.*)" 

</strong></pre> 

3. Another HTTP GET example (that no longer works) is:

 

$url="http://www.seismi.org/api/eqs" 

$response = Invoke-RestMethod -Uri $uri 

# Extract child items: 

$people = $response.items 

This returns:

    

count earthquakes                                                               

----- -----------                                                               

21740 {@{src=us; eqid=c000is61; timedate=2013-07-29 22:22:48; lat=7.6413; lo... 

POST Invoke-RestMethod

POST involve sending both a body and headers.

   $person = @{ 

      first='joe' 

      lastname='doe' 

   } 

   $body = (ConvertTo-Json $person) 

   $hdrs = @{} 

   $hdrs.Add("X-API-KEY","???") 

   $hdrs.Add("X-SIGNATURE","234j123l4kl23j41l23k4j") 

   $hdrs.Add("X-DATE","12/29/2016") 

   Invoke-RestMethod -Uri $url -Method Post -Body $body -ContentType 'application/json' -Headers $hdrs 

   

ConvertTo-Json

The above on several lines is easier to read than one long line:

   $hdrs = @{"X-API-KEY"='???'; "X-SIGNATURE"='234j123l4kl23j41l23k4j'; X-DATE"='12/29/2016'"} 

   

The power of Powershell vs wget are such helpers and how it can �uidly turn input into objects, and then to
manipulate those objects in a granular way.

The API-KEY is obtained from the service’s website during sign-up.

http://www.newegg.com/Product/Product.aspx?Item=N82E16881147042&nm_
http://go.microsoft.com/fwlink/p/?linkid=293997
https://technet.microsoft.com/en-us/library/ff730930.aspx
http://www.seismi.org/api/eqs


WARNING: If -ContentType 'application/json  is not added to REST calls, an error message is likely because when
POST is speci�ed, Invoke-RestMethod sets the content type to “application/x-www-form-urlencoded” for sending
out forms, not REST calls.

Base64 Encoding for Authentication

See The example at Pro�tbricks for an example. You won’t be able to run the code if you don’t have an account.

But you’ll want to get an account because it’s a great service that is convenient and enables you to work with
multiple clouds.

Authentication

For session authentication with cookies, see https://community.qualys.com/docs/DOC-5594 based on
https://www.qualys.com/docs/qualys-api-v2-user-guide.pdf

1. De�ne credentials in environment variables:

$username = 'me_user'   

$password = 'me_password'   

$target = "Daily Whatsis Roundup"   

2. Obtain a session variable sess

$hdrs = @{"X-Requested-With"="powershell"}   

$base = "https://qualysapi.qualys.com/api/2.0/fo"   

$body = "action=login&username=$username&password=$password"   

Invoke-RestMethod -Headers $hdrs -Uri "$base/session/" -Method Post -Body $body -SessionVariable sess 

This doesn’t work anymore https://community.qualys.com/docs/DOC-
4523#jive_content_id_Windows_Powershell_30

$username = "username"   

$password = "password"   

$password_base64 = ConvertTo-SecureString $password -AsPlainText -Force   

$creds = New-Object System.Management.Automation.PSCredential ($username, $password_base64)   

$headers = @{"X-Requested-With"="powershell"}   

$url = "https://qualysapi.qualys.com/about.php"   

Invoke-RestMethod -Headers $headers -Uri $url -Method Post -Credential $creds -OutFile response.xml   

Basic Authentication to GitHub

The code below makes a request sending the credentials in an Authorization header:

‘Basic [base64(“username:password”)]’

In PowerShell that would translate to something like:

function Get-BasicAuthCreds { 

    param([string]$Username,[string]$Password) 

    $AuthString = "{0}:{1}" -f $Username,$Password 

    $AuthBytes  = [System.Text.Encoding]::Ascii.GetBytes($AuthString) 

    return [Convert]::ToBase64String($AuthBytes) 

} 

$BasicCreds = Get-BasicAuthCreds -Username "Shaun" -Password "s3cr3t" 

Invoke-WebRequest -Uri $GitHubUri -Headers @{"Authorization"="Basic $BasicCreds"} 

Ignore Self-Signed Certs

https://devops.profitbricks.com/tutorials/use-powershell-to-consume-a-profitbricks-rest-api/
https://www.profitbricks.co.uk/signup
https://community.qualys.com/docs/DOC-5594
https://www.qualys.com/docs/qualys-api-v2-user-guide.pdf
https://qualysapi.qualys.com/api/2.0/fo
https://community.qualys.com/docs/DOC-4523#jive_content_id_Windows_Powershell_30
https://qualysapi.qualys.com/about.php
https://wilsonmar.github.io/powershell-rest-api/


http://www.datacore.com/RESTSupport-Webhelp/using_windows_powershell_as_a_rest_client.htm notes When
using Windows PowerShell as a client, to avoid SSL Certi�cate trust issues if using HTTPS, enter this function in the
PowerShell window:

function Ignore-SelfSignedCerts 

{ 

    try 

    { 

        Write-Host "Adding TrustAllCertsPolicy type." -ForegroundColor White 

        Add-Type -TypeDefinition  @" 

        using System.Net; 

        using System.Security.Cryptography.X509Certificates; 

        public class TrustAllCertsPolicy : ICertificatePolicy 

        { 

             public bool CheckValidationResult( 

             ServicePoint srvPoint, X509Certificate certificate, 

             WebRequest request, int certificateProblem) 

             { 

                 return true; 

            } 

        } 

"@ 

        Write-Host "TrustAllCertsPolicy type added." -ForegroundColor White 

      } 

    catch 

    { 

        Write-Host $_ -ForegroundColor "Yellow" 

    } 

    [System.Net.ServicePointManager]::CertificatePolicy = New-Object TrustAllCertsPolicy 

} 

Ignore-SelfSignedCerts 

Invoke-WebRequest to get �le

Here is an example of downloading a �le from the internet into whatever path is speci�ed in the environment
variable $Temp.

echo "$Temp=${env:Temp}" 

Invoke-WebRequest -Uri 'https://oneget.org/nuget-anycpu-2.8.3.6.exe' -OutFile "${env:Temp}\nuget.exe" 

The Hey Scripting Guy article from 2013 by Doug Finke, author of Windows PowerShell for Developers, offered this
example, which now returns a “401 (gone)” because it’s deprecated. Nevertheless, try the syntax on a working API:

1. Filter the response through the PSCustomObject  cmdlet and format it:

Invoke-RestMethod -Uri “https://gdata.youtube.com/feeds/api/videos?
v=2&q=PowerShell” | foreach {[PSCustomObject]@{Title=$.Title;
Author=$.Author.name; Link=$_.content.src}} | Format-List

Resources

https://www.jokecamp.com/blog/invoke-restmethod-powershell-examples/

http://www.powershellmagazine.com/2014/12/24/using-azure-resource-management-rest-api-in-powershell/

Lee Holmes, author of Windows PowerShell Cookbook, 3rd Edition.

http://www.powershellatoms.com/basic/download-�le-website-powershell/

https://www.youtube.com/watch?v=U3Ne_yX4tYo&index=1&list=PL5uoqS92stXioZw-u-ze_NtvSo0k0K0kq
PowerShell Excel Module - ImportExcel Playlist of 5 vidoes Oct 5, 2017 by Doug Finke

http://www.datacore.com/RESTSupport-Webhelp/using_windows_powershell_as_a_rest_client.htm
https://oneget.org/nuget-anycpu-2.8.3.6.exe
https://blogs.technet.microsoft.com/heyscriptingguy/2013/10/21/invokerestmethod-for-the-rest-of-us/
http://shop.oreilly.com/product/0636920024491.do
https://gdata.youtube.com/feeds/api/videos?v=2&q=PowerShell%E2%80%9D
https://www.jokecamp.com/blog/invoke-restmethod-powershell-examples/
http://www.powershellmagazine.com/2014/12/24/using-azure-resource-management-rest-api-in-powershell/
http://shop.oreilly.com/product/0636920024132.do
http://www.powershellatoms.com/basic/download-file-website-powershell/
https://www.youtube.com/watch?v=U3Ne_yX4tYo&index=1&list=PL5uoqS92stXioZw-u-ze_NtvSo0k0K0kq

